Browse > Article
http://dx.doi.org/10.4150/KPMI.2018.25.5.402

Fabrication of Molybdenum Silicide-based Composites with Uniformly Dispersed Silicon Carbide  

Choi, Won June (Department of Materials Science and Engineering, Hanyang University)
Park, Chun Woong (Department of Materials Science and Engineering, Hanyang University)
Kim, Young Do (Department of Materials Science and Engineering, Hanyang University)
Byun, Jong Min (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Journal of Powder Materials / v.25, no.5, 2018 , pp. 402-407 More about this Journal
Abstract
Molybdenum silicide has gained interest for high temperature structural applications. However, poor fracture toughness at room temperatures and low creep resistance at elevated temperatures have hindered its practical applications. This study uses a novel powder metallurgical approach applied to uniformly mixed molybdenum silicide-based composites with silicon carbide. The degree of powder mixing with different ball milling time is also demonstrated by Voronoi diagrams. Core-shell composite powder with Mo nanoparticles as the shell and ${\beta}-SiC$ as the core is prepared via chemical vapor transport. Using this prepared core-shell composite powder, the molybdenum silicide-based composites with uniformly dispersed ${\beta}-SiC$ are fabricated using pressureless sintering. The relative density of the specimens sintered at $1500^{\circ}C$ for 10 h is 97.1%, which is similar to pressure sintering owing to improved sinterability using Mo nanoparticles.
Keywords
Molybdenum silicide; Silicon carbide; Composite; Voronoi diagram; Pressureless sintering;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. M. Shah: $MoSi_2$ and Other Silicides as High Temperature Structural Materials, S. D. Antolovich, R. W. Stusrud, R.A. MacKay, D. L. Anton, T. Khan, R.D. Kissinger, and D.L. Klarstrom(Ed.), The Minerals, Metals & Materials Society, Warrendale (1992) 409.
2 Z. Yao, J. J. Stiglich and T. S. Sudarshan: J. Mater. Eng. Perform., 8 (1999) 291.   DOI
3 Y. S. Touloukian, R. W. Powell, C. Y. Ho and P. G. Klemens: Thermal Conductivity: Metallic Elements and Alloys, P.G. IFI/Plenum, New York (1970) 1324.
4 Y. Harada, M. Morinaga, D. Saso, M. Takata and M. Sakata: Intermetallics 6 (1998) 523.   DOI
5 X. Y. Wang, I. T. H. Chang and M. Aindow: Intermetallics 10 (2002) 829.   DOI
6 P. Hvizdos, J. Dusza, W. Steinkellner and K. Kromp: J. Mater. Sci., 39 (2004) 4073.   DOI
7 Z. Wang, S. Li, M, Wang, G. Wu, X. Sun and M. Liu: Int. J. Refract. Met. Hard Mater., 41 (2013) 489.   DOI
8 I. Y. Ko, H. S. Kang, J. M. Doh, J. K. Yoon and I. J. Shon: J. Alloys Compd., 502 (2010) L10.   DOI
9 Z. Huang, W. Zhou, X. Tang and J. Zhu: J. Alloys Compd., 509 (2011) 1920.   DOI
10 J. Y. Gao and W, Jiang: J. Alloys Compd., 476 (2009) 667.   DOI
11 M. Zakeri and M. Ahmadi: Bull. Mater. Sci., 35 (2012) 533.   DOI
12 J. M. Byun, S. R. Bang, S. H. Kim and Y. D. Kim: Powder Metall., 59 (2016) 197.   DOI
13 P. Hvizdos, M. Besterci, B. Ballokova, R. Scholl and A. Bohm: Mater. Lett., 51 (2001) 485.   DOI
14 C. D. Wirkus and D. R. Wilder: J. Am. Ceram. Soc., 49 (1966) 173.   DOI
15 M. A. Mulla and V. D. Cristic: Acta Metall. Mater., 42 (1994) 303.   DOI
16 K. Biswas: Materials Science Forum, 624 (2009) 71.   DOI
17 Y. J. Lee, C. W. Park, D.-G. Kim, W. T. Nichols, S. T. Oh and Y. D. Kim: J. Ceram. Process. Res., 11 (2010) 52.
18 Y. J. Lee, Y. I. Seo, S. H. Kim, D. G. Kim and Y. D. Kim: Appl. Phys. A, 97 (2009) 237.   DOI