DOI QR코드

DOI QR Code

양극산화알루미늄의 형상제어와 이를 이용한 실리콘 분말 전극 지지체 효과

Shape Control of Anodic Aluminum Oxide and Effect as Support of Silicon Powder Electrode

  • 송주석 (경상대학교 나노.신소재융합공학과 & 그린에너지 융합연구소) ;
  • 하종근 (경상대학교 나노신소재공학부) ;
  • 김유영 (경남과학기술대학교 기계공학과) ;
  • 박동규 (링크사업단 & 경상대학교 나노신소재공학부) ;
  • 안인섭 (경상대학교 나노신소재공학부) ;
  • 안주현 (경상대학교 나노.신소재융합공학과 & 그린에너지 융합연구소) ;
  • 조권구 (경상대학교 나노.신소재융합공학과 & 그린에너지 융합연구소)
  • Song, Ju-Seok (Dept. of Materials Engineering and Convergence Technology & RIGET, Gyeongsang National University) ;
  • Ha, Jong-Keun (School of Materials Science and Engineering, Gyeongsang National University) ;
  • Kim, Yoo-Young (Dept. of Mechanical Engineering, Gyeongnam National University of Science and Technology) ;
  • Park, Dong-Kyu (LINC & School of Materials Science and Engineering, Gyeongsang National University) ;
  • Ahn, In-Shup (School of Materials Science and Engineering, Gyeongsang National University) ;
  • Ahn, Jou-Hyeon (Dept. of Materials Engineering and Convergence Technology & RIGET, Gyeongsang National University) ;
  • Cho, Kwon-Koo (Dept. of Materials Engineering and Convergence Technology & RIGET, Gyeongsang National University)
  • 투고 : 2015.08.10
  • 심사 : 2015.08.26
  • 발행 : 2015.08.28

초록

Anodic aluminum oxide (AAO) has been widely used for the development and fabrication of nano-powder with various morphologies such as particle, wire, rod, and tube. So far, many researchers have reported about shape control and fabrication of AAO films. However, they have reported on the shape control with different diameter and length of anodic aluminum oxide mainly. We present a combined mild-hard (or hard-mild) anodization to prepare shape-controlled AAO films. Two main parameters which are combination mild-hard (or hard-mild) anodization and run-time of voltage control are applied in this work. The voltages of mild and hard anodization are respectively 40 and 80 V. Anodization was conducted on the aluminum sheet in 0.3 mole oxalic acid at $4^{\circ}C$. AAO films with morphologies of varying interpore distance, branch-shaped pore, diameter-modulated pore and long funnel-shaped pore were fabricated. Those shapes will be able to apply to fabricate novel nano-materials with potential application which is especially a support to prevent volume expansion of inserted active materials, such as metal silicon or tin powder, in lithium ion battery. The silicon powder electrode using an AAO as a support shows outstanding cycle performance as 1003 mAh/g up to 200 cycles.

키워드

참고문헌

  1. G. E. J. Poinern, N. Ali and D. Fawcett: Materials, 4 (2010) 487.
  2. J. M. Montero-Moreno, M. Sarret and C. Muller: J. Electrochem. Soc., 154 (2007) 169. https://doi.org/10.1149/1.2426880
  3. T. Aerts, I. De Graeve and H. Terryn: Surf. Coat. Technol., 204 (2010) 2754. https://doi.org/10.1016/j.surfcoat.2010.02.031
  4. J. M. Montero-Moreno, M. Belenguer, M. Sarret and C. M. Muller: Electrochim. Acta, 54 (2009) 2529. https://doi.org/10.1016/j.electacta.2008.03.067
  5. F. Keller, M. S. Hunter and D. L. Roinson: J. Electrochem. Sci., 100 (1953) 411. https://doi.org/10.1149/1.2781142
  6. Masuda, H. and Fukuda, K.: Science, 268 (1995) 1466. https://doi.org/10.1126/science.268.5216.1466
  7. W. Lee, R. Ji, U. Gosele and K. Nielsch: Nat. Mater., 5 (2006) 741. https://doi.org/10.1038/nmat1717
  8. I. Mikulskas, S. Juodkazis, R. Tomasiunas and J.G. Dumas: Adv. Mater., 13 (2001) 1574. https://doi.org/10.1002/1521-4095(200110)13:20<1574::AID-ADMA1574>3.0.CO;2-9
  9. Y. Matsui, K. Nishio and H. Masuda: Small, 2 (2006) 522. https://doi.org/10.1002/smll.200500440
  10. H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao and T. Tamamura: Appl. Phys. Lett., 71 (1997) 2770. https://doi.org/10.1063/1.120128
  11. B. Chen, K. Lu and Z. P. Tian: Electrochim. Acta, 56 (2010) 435. https://doi.org/10.1016/j.electacta.2010.08.057
  12. J. H. Lim, A. Rotaru, S. G. Min, L. Malkinski and J. B. Wiley: J. Mater. Chem., 20 (2010) 9246. https://doi.org/10.1039/c0jm01365j
  13. G. D. Sulka, A. Brzozka and L. Liu: Electrochim. Acta, 56 (2011) 4972. https://doi.org/10.1016/j.electacta.2011.03.126
  14. Y. Wang, A. Santos, A. Evdokiou and D. Losic: Electrochim. Acta, 154 (2015) 379. https://doi.org/10.1016/j.electacta.2014.12.056
  15. T. Gao, G. Meng, J. Zhang, S. Sun and L. Zhang: Appl. Phys. A: Mater. Sci. Process., 74 (2002) 403. https://doi.org/10.1007/s003390101136
  16. C. Shuoshuo, L. Zhiyuan, H. Xing and L. Yi: J. Mater. Chem., 19 (2009) 5717. https://doi.org/10.1039/b908815f
  17. S. Zhao, K. Chan, A. Yelon and T. Veres: Adv. Mater., 19 (2007) 3004. https://doi.org/10.1002/adma.200701284
  18. H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao and T. Tamamura: Adv. Mater., 13 (2001) 189. https://doi.org/10.1002/1521-4095(200102)13:3<189::AID-ADMA189>3.0.CO;2-Z
  19. Guangyuan Zheng, Yuan Yang, Judy J. Cha, Seung Sae Hong, and Yi Cui: Nano Lett., 11 (2011) 4462. https://doi.org/10.1021/nl2027684
  20. Huajun Tian, Fengxia Xin, Xiaoliang Wang, Wei He and Weiqiang Han: J. Mat., 21 (2015) 1.
  21. J. Oh and C. V. Thompson: Electrochim. Acta., 56 (2011) 4044. https://doi.org/10.1016/j.electacta.2011.02.002
  22. X. Wang and G.-R. Han: Microelectron. Eng., 66 (2003) 166. https://doi.org/10.1016/S0167-9317(03)00042-X