DOI QR코드

DOI QR Code

Fabrication of Molybdenum Silicide-based Composites with Uniformly Dispersed Silicon Carbide

탄화 규소가 균일 분산된 규화 몰리브데넘계 복합재의 제조

  • Choi, Won June (Department of Materials Science and Engineering, Hanyang University) ;
  • Park, Chun Woong (Department of Materials Science and Engineering, Hanyang University) ;
  • Kim, Young Do (Department of Materials Science and Engineering, Hanyang University) ;
  • Byun, Jong Min (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 최원준 (한양대학교 신소재공학과) ;
  • 박천웅 (한양대학교 신소재공학과) ;
  • 김영도 (한양대학교 신소재공학과) ;
  • 변종민 (서울과학기술대학교 신소재공학과)
  • Received : 2018.10.10
  • Accepted : 2018.10.14
  • Published : 2018.10.28

Abstract

Molybdenum silicide has gained interest for high temperature structural applications. However, poor fracture toughness at room temperatures and low creep resistance at elevated temperatures have hindered its practical applications. This study uses a novel powder metallurgical approach applied to uniformly mixed molybdenum silicide-based composites with silicon carbide. The degree of powder mixing with different ball milling time is also demonstrated by Voronoi diagrams. Core-shell composite powder with Mo nanoparticles as the shell and ${\beta}-SiC$ as the core is prepared via chemical vapor transport. Using this prepared core-shell composite powder, the molybdenum silicide-based composites with uniformly dispersed ${\beta}-SiC$ are fabricated using pressureless sintering. The relative density of the specimens sintered at $1500^{\circ}C$ for 10 h is 97.1%, which is similar to pressure sintering owing to improved sinterability using Mo nanoparticles.

Keywords

References

  1. D. M. Shah: $MoSi_2$ and Other Silicides as High Temperature Structural Materials, S. D. Antolovich, R. W. Stusrud, R.A. MacKay, D. L. Anton, T. Khan, R.D. Kissinger, and D.L. Klarstrom(Ed.), The Minerals, Metals & Materials Society, Warrendale (1992) 409.
  2. Z. Yao, J. J. Stiglich and T. S. Sudarshan: J. Mater. Eng. Perform., 8 (1999) 291. https://doi.org/10.1361/105994999770346837
  3. Y. S. Touloukian, R. W. Powell, C. Y. Ho and P. G. Klemens: Thermal Conductivity: Metallic Elements and Alloys, P.G. IFI/Plenum, New York (1970) 1324.
  4. C. D. Wirkus and D. R. Wilder: J. Am. Ceram. Soc., 49 (1966) 173. https://doi.org/10.1111/j.1151-2916.1966.tb13227.x
  5. Y. Harada, M. Morinaga, D. Saso, M. Takata and M. Sakata: Intermetallics 6 (1998) 523. https://doi.org/10.1016/S0966-9795(97)00102-7
  6. X. Y. Wang, I. T. H. Chang and M. Aindow: Intermetallics 10 (2002) 829. https://doi.org/10.1016/S0966-9795(02)00035-3
  7. P. Hvizdos, J. Dusza, W. Steinkellner and K. Kromp: J. Mater. Sci., 39 (2004) 4073. https://doi.org/10.1023/B:JMSC.0000031499.17440.17
  8. Z. Wang, S. Li, M, Wang, G. Wu, X. Sun and M. Liu: Int. J. Refract. Met. Hard Mater., 41 (2013) 489. https://doi.org/10.1016/j.ijrmhm.2013.06.007
  9. I. Y. Ko, H. S. Kang, J. M. Doh, J. K. Yoon and I. J. Shon: J. Alloys Compd., 502 (2010) L10. https://doi.org/10.1016/j.jallcom.2010.04.120
  10. Z. Huang, W. Zhou, X. Tang and J. Zhu: J. Alloys Compd., 509 (2011) 1920. https://doi.org/10.1016/j.jallcom.2010.10.088
  11. J. Y. Gao and W, Jiang: J. Alloys Compd., 476 (2009) 667. https://doi.org/10.1016/j.jallcom.2008.09.076
  12. M. Zakeri and M. Ahmadi: Bull. Mater. Sci., 35 (2012) 533. https://doi.org/10.1007/s12034-012-0342-2
  13. J. M. Byun, S. R. Bang, S. H. Kim and Y. D. Kim: Powder Metall., 59 (2016) 197. https://doi.org/10.1080/00325899.2016.1142725
  14. P. Hvizdos, M. Besterci, B. Ballokova, R. Scholl and A. Bohm: Mater. Lett., 51 (2001) 485. https://doi.org/10.1016/S0167-577X(01)00340-8
  15. M. A. Mulla and V. D. Cristic: Acta Metall. Mater., 42 (1994) 303. https://doi.org/10.1016/0956-7151(94)90072-8
  16. K. Biswas: Materials Science Forum, 624 (2009) 71. https://doi.org/10.4028/www.scientific.net/MSF.624.71
  17. Y. J. Lee, C. W. Park, D.-G. Kim, W. T. Nichols, S. T. Oh and Y. D. Kim: J. Ceram. Process. Res., 11 (2010) 52.
  18. Y. J. Lee, Y. I. Seo, S. H. Kim, D. G. Kim and Y. D. Kim: Appl. Phys. A, 97 (2009) 237. https://doi.org/10.1007/s00339-009-5209-z