• 제목/요약/키워드: silicon nanoparticles

검색결과 109건 처리시간 0.028초

Highly sensitive gas sensor using hierarchically self-assembled thin films of graphene oxide and gold nanoparticles

  • Ly, Tan Nhiem;Park, Sangkwon
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제67권
    • /
    • pp.417-428
    • /
    • 2018
  • In this study, we fabricated hierarchically self-assembled thin films composed of graphene oxide (GO) sheets and gold nanoparticles (Au NPs) using the Langmuir-Blodgett (LB) and Langmuir-Schaefer (LS) techniques and investigated their gas-sensing performance. First, a thermally oxidized silicon wafer ($Si/SiO_2$) was hydrophobized by depositing the LB films of cadmium arachidate. Thin films of ligand-capped Au NPs and GO sheets of the appropriate size were then sequentially transferred onto the hydrophobic silicon wafer using the LB and the LS techniques, respectively. Several different films were prepared by varying the ligand type, film composition, and surface pressure of the spread monolayer at the air/water interface. Their structures were observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM), and their gas-sensing performance for $NH_3$ and $CO_2$ was assessed. The thin films of dodecanethiol-capped Au NPs and medium-sized GO sheets had a better hierarchical structure with higher uniformity and exhibited better gas-sensing performance.

전기화학을 이용한 실리콘 표면상으로 기능성 물질의 공간 선택적 고정화 연구 (Spatially Selective Immobilization of Functional Materials onto Silicon Surfaces Using Electrochemical Method)

  • 박수현;아칠성;김규원
    • 전기화학회지
    • /
    • 제12권1호
    • /
    • pp.40-46
    • /
    • 2009
  • 실리콘 표면을 전기화학적으로 활성화하여 활성화된 표면에만 선택적으로 단백질이나 나노입자 등의 기능성 물질을 고정화하는 방법을 개발하였다. 이를 위해 Carboxymethylbenzendiazonium (CMBD) 양이온을 전기화학적 환원반응을 통해 고정하여 실리콘 표면을 활성화하는 방식을 선택하였다. 그리고 활성화 된 표면에서만 기능성 물질이 고정된 것을 확인함을 통하여 CMBD 양이온의 사용이 선택적 고정화에 매우 효과적임을 보였다. 나아가 이 방법을 응용하여 실리콘 나노소자에 탑재된 실리콘 나노선 어레이 중 선택된 나노선의 표면만을 활성화하고 금 나노입자를 선택적으로 고정하는 연구를 수행하였다.

레이저 열분해법을 이용한 실리콘 나노입자 제조 (Formation of Silicon Nanoparticles Using Laser Pyrolysis)

  • 박주형;이재희;송진수;이정철
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.105.1-105.1
    • /
    • 2011
  • To enhance the performance of photovoltaic a-Si:H solar cells with a hybrid-type light absorbing structure of single crystal silicon nanoparticles (Si NPs) in a-Si:H matrix, single crystal Si NPs were produced by laser pyrolysis. The Si NPs were synthesized by $SiH_4$ gas decomposition using a $CO_2$ laser. The properties of Si NPs were controlled by process parameters such as $CO_2$ laser power, reactive gas pressure, and $H_2/SiH_4$ gas flows. The crystalline properties and sizes of Si NPs were analyzed by High Resolution Transmission Electron Microscopy (HRTEM). The sizes of Si NPs were controllable in the range of 5-15 nm in diameter and the effects of process parameters of laser pyrolysis were systematically investigated.

  • PDF

증발-응축법에 의해 발생된 은(silver) 나노입자의 구조제어 및 전기적 부착 특성 연구 (Morphological control and electrostatic deposition of silver nanoparticles produced by condensation-evaporation method)

  • 김휘동;안지영;김수형
    • 한국입자에어로졸학회지
    • /
    • 제5권2호
    • /
    • pp.83-90
    • /
    • 2009
  • This paper describes a condensation-evaporation method (CEM) to produce size-controlled spherical silver nanoparticles by perturbing coagulation and coalescence processes in the gas phase. Polydisperse silver nanoparticles generated by the CEM were first introduced into a differential mobility analyzer (DMA) to select a group of silver nanoparticles with same electrical mobility, which also enables to make a group of nanoparticles with elongated structures and same projected area. These silver nanoparticles selected by the DMA were then in-situ sintered at ${\sim}600^{\circ}C$, and then they were observed to turn into spherical shaped nanoparticles by the rapid coalescence process. With the assistance of modified converging-typed quartz reactor, we can also produce the 10 times higher number concentration of silver nanoparticles compared with a general quartz reactor with uniform diameter. Finally, the spherical silver nanoparticles with 30 nm were electrostatically deposited on the surface of silicon substrate with the coverage rate of ~4%/hr. This useful preparation method of size-controlled monodisperse silver nanoparticles developed in this work can be applied to the various studies for characterizing the physical, chemical, optical, and biological properties of nanoparticles as a function of their size.

  • PDF

Vibration analysis of silica nanoparticles-reinforced concrete beams considering agglomeration effects

  • Shokravi, Maryam
    • Computers and Concrete
    • /
    • 제19권3호
    • /
    • pp.333-338
    • /
    • 2017
  • In this paper, nonlinear vibration of embedded nanocomposite concrete is investigated based on Timoshenko beam model. The beam is reinforced by with agglomerated silicon dioxide (SiO2) nanoparticles. Mori-Tanaka model is used for considering agglomeration effects and calculating the equivalent characteristics of the structure. The surrounding foundation is simulated with Pasternak medium. Energy method and Hamilton's principal are used for deriving the motion equations. Differential quadrature method (DQM) is applied in order to obtain the frequency of structure. The effects of different parameters such as volume percent of SiO2 nanoparticles, nanoparticles agglomeration, elastic medium, boundary conditions and geometrical parameters of beam are shown on the frequency of system. Numerical results indicate that with increasing the SiO2 nanoparticles, the frequency of structure increases. In addition, considering agglomeration effects leads to decrease in frequency of system.

용액 공정을 통한 도핑된 실리콘 나노입자의 합성과 특성 (Synthesis and Characterization of Doped Silicon Nanoparticles by a Solution Route)

  • 권하영;임은희;이성구;이경균
    • 공업화학
    • /
    • 제21권6호
    • /
    • pp.694-696
    • /
    • 2010
  • 용액공정을 이용하여 표면에 알킬기를 도입하고, 붕소(boron) 또는 인(phosphorous)으로 도핑된 실리콘 나노 입자를 합성하였다. 나노 입자의 합성 여부 및 입자크기는 핵자기공명분광기(NMR), 적외선분광기(FT-IR), 자외선가시광선분광기(UV-Vis), 인광분광기(PL)를 이용하여 분석하였다. 마이크로웨이브 소결기를 이용하여 표면의 알킬기를 제거하고, 결정성을 갖는 필름을 제작하였다. 필름의 조각은 $200{\mu}m$ 정도의 크기를 가지며 큐빅구조를 가지고 있다는 것을 전자주사현미경(FE-SEM)과 투과전자현미경(FR-TEM)으로 확인할 수 있었다. 필름의 전도도는 도핑 타입을 통해 조절할 수 있었다.

실리콘 산화질화물 기지상 적용에 따른 Au 나노입자 분산 복합체 박막의 광학적 특성 (Effect of Silicon Oxynitride Matrix on the Optical Properties of Au Nanoparticles Dispersed Composite Film)

  • 조성훈;이경석
    • 한국재료학회지
    • /
    • 제19권12호
    • /
    • pp.637-643
    • /
    • 2009
  • In this study, we analyzed the effect of silicon oxynitride matrix on the optical properties of Au nanoparticles dispersed on composite film and explored the effectiveness of the silicon in fine tuning the refractive index of the composite film for applications in optical waveguide devices. The atomic fraction of nitrogen in $SiO_xN_y$ films was controlled by varying the relative flow ratio of nitrogen gas in reactive sputtering and was evaluated optically using an effective medium theory with Bruggeman geometry consisting of a random mixture between $SiO_2$ and $Si_3N_4$. The Au nanoparticles were embedded in the $SiO_xN_y$ matrix by employing the alternating deposition technique and clearly showed an absorption peak due to the excitation of surface plasmon. With increasing nitrogen atomic fraction in the matrix, the surface plasmon resonance wavelength shifted to a longer wavelength (a red-shift) with an enhanced resonance absorption. These characteristics were interpreted using the Maxwell-Garnett effective medium theory. The formation of a guided mode in a slab waveguide consisting of 3 $\mu$m thick Au:$SiO_xN_y$ nanocomposite film was confirmed at the telecommunication wavelength of 1550 nm by prism coupler method and compared with the case of using $SiO_2$ matrix. The use of $SiO_xN_y$ matrix provides an effective way of controlling the mode confinement while maintaining or even enhancing the surface plasmon resonance properties.

Numerical study for vibration response of concrete beams reinforced by nanoparticles

  • Heidari, Ali;Keikha, Reza;Haghighi, Mohammad Salkhordeh;Hosseinabadi, Hamidreza
    • Structural Engineering and Mechanics
    • /
    • 제67권3호
    • /
    • pp.311-316
    • /
    • 2018
  • Vibration of concrete beams reinforced by agglomerated silicon dioxide ($SiO_2$) nanoparticles is studied based on numerical methods. The structure is simulated by Euler-Bernoulli beam model and the Mori-Tanaka model is used for obtaining the effective material properties of the structure. The concrete beam is located in soil medium which is modeled by spring elements. The motion equations are derived based on energy method and Hamilton's principle. Based on exact solution, the frequency of the structure is calculated. The effects of different parameters such as volume percent of $SiO_2$ nanoparticles and agglomeration, soil medium and geometrical parameters of beam are shown on the frequency of system. The results show that with increasing the volume percent of $SiO_2$ nanoparticles, the frequency increases.

Pulsed Laser Ablation으로 제작한 $C_{60}$ 및 Si 박막의 광학적 특성 분석 (Optical Properties of Silicon Nanoparticles and $C_{60}$ Thin Films Prepared by Pulsed Laser Ablation)

  • 김민성
    • 동력기계공학회지
    • /
    • 제9권4호
    • /
    • pp.118-123
    • /
    • 2005
  • We have investigated the fabrication of Si nanoparticles and $C_{60}$ thin films by pulsed laser ablation. By atomic force microscopy(AFM), the laser-deposited $C_{60}$ thin film was verified to have surface far smoother than the surfaces of films produced by the conventional evaporation method. The Si deposited at a He atmosphere of 0.2 Torr was with about $60{\AA}$ height of the Si nanoparticles, suggesting that it was uniformly deposited. We observed visible green emissions spectra in the $Si/C_{60}$ multilayer films after laser annealing. It is considered that this green emissions is occurred from SiC particles, which is produced reaction of Si nanoparticles with $C_{60}$ by laser annealing.

  • PDF

Large Scale Production of Nanoparticles by Laser Pyrolysis

  • Tenegal, Francois;Guizard, Benoit;Reau, Adrien;Ye, Chang;Boulanger, Loic;Giraud, Sophie;Canel, Jerome
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.150-151
    • /
    • 2006
  • Laser pyrolysis is a very suitable method for the synthesis of a wide range of nanoparticles. A pilot unit based on this process has been recently developed at CEA. This paper reports results showing the possibility to produce SiC and $TiO_2$ nanoparticles at rates of respectively 1 and 0.2 kg/h and also the possibility to adjust the mean grain size of the particles and their structure by changing the laser intensity and reactants flow rates. First tests of liquid recovery have been also successfully performed to limit the risks of nanoparticles dissemination in the environement during their recovery.

  • PDF