Browse > Article
http://dx.doi.org/10.12989/cac.2017.19.3.333

Vibration analysis of silica nanoparticles-reinforced concrete beams considering agglomeration effects  

Shokravi, Maryam (Buein Zahra Technical University)
Publication Information
Computers and Concrete / v.19, no.3, 2017 , pp. 333-338 More about this Journal
Abstract
In this paper, nonlinear vibration of embedded nanocomposite concrete is investigated based on Timoshenko beam model. The beam is reinforced by with agglomerated silicon dioxide (SiO2) nanoparticles. Mori-Tanaka model is used for considering agglomeration effects and calculating the equivalent characteristics of the structure. The surrounding foundation is simulated with Pasternak medium. Energy method and Hamilton's principal are used for deriving the motion equations. Differential quadrature method (DQM) is applied in order to obtain the frequency of structure. The effects of different parameters such as volume percent of SiO2 nanoparticles, nanoparticles agglomeration, elastic medium, boundary conditions and geometrical parameters of beam are shown on the frequency of system. Numerical results indicate that with increasing the SiO2 nanoparticles, the frequency of structure increases. In addition, considering agglomeration effects leads to decrease in frequency of system.
Keywords
vibration of concrete beam; agglomerated SiO2 nanoparticles; Pasternak medium; DQM; Mori-Tanaka model;
Citations & Related Records
Times Cited By KSCI : 12  (Citation Analysis)
연도 인용수 순위
1 Brush, D.O. and Almroth, B.O. (1975), Buckling of Bars, Plates and Shells, McGraw-Hill, New York, U.S.A.
2 Ding, F.X., Liu, J., Liu, X.M., Guo, F.Q. and Jiang, L.Z. (2016), "Flexural stiffness of steel-concrete composite beam under positive moment", Steel Compos. Struct., 20(6), 1369-1389.   DOI
3 El-Helou, R.G. and Aboutaha, R.S. (2015), "Analysis of rectangular hybrid steel-GFRP reinforced concrete beam columns", Comput. Concrete, 16(2), 245-260.   DOI
4 Guneyisi, E., Gesoglu, M., Azez, O.A. and Oz, H.O. (2015), "Physico-mechanical properties of self-compacting concrete containing treated cold-bonded fly ash lightweight aggregates and SiO2 nano-particle", Constr. Build. Mater., 101, 1142-1153.   DOI
5 Heidarzadeh, A., Kolahchi, R. and Rabani, B.M. (2016), "Concrete pipes reinforced with AL2O3 nanoparticles considering agglomeration: Magneto-thermo-mechanical stress analysis", J. Civil Eng., 1-8.
6 Hind, M.K., Mustafa, O., Talha, E. and Abdolbaqi, M.K. (2016), "Flexural behavior of concrete beams reinforced with different types of fibers", Comput. Concrete, 18(5), 999-1018.   DOI
7 Ibraheem, O.F., Abu Bakar, B.H. and Johari, I. (2014), "Fiber reinforced concrete L-beams under combined loading", Comput. Concrete, 14(1), 1-18.   DOI
8 Ibraheem, O.F., Abu Bakar, B.H. and Johari, I. (2015), "Behavior and crack development of fiber-reinforced concrete spandrel beams under combined loading: An experimental study", Struct. Eng. Mech., 54(1), 1-17.   DOI
9 Saribiyik, A. and Caglar, N. (2016), "Flexural strengthening of RC beams with low-strength concrete using GFRP and CFRP", Struct. Eng. Mech., 58(5), 825-845.   DOI
10 Zamanian, M., Kolahchi, R. and Rabanim, B.M. (2016), "Agglomeration effects on the buckling behaviour of embedded concrete columns reinforced with SiO2 nano-particles", Wind Struct., 24(1), 43-57.   DOI
11 Kolahchi, R., Safari, M. and Esmailpour, M. (2016a), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265.   DOI
12 Jafarian, A.A. and Kolahchi, R. (2016), "Buckling analysis of embedded concrete columns armed with carbon nanotubes", Comput. Concrete, 17(5), 567-578.   DOI
13 Jalala, M., Fathi, M. and Farzad, M. (2013), "Effects of fly ash and TiO2 nanoparticles on rheological, mechanical, microstructural and thermal properties of high strength self-compacting concrete", Mech. Mater., 61, 11-27.   DOI
14 Khalaj, G. and Nazari, A. (2012), "Modeling split tensile strength of high strength self-compacting concrete incorporating randomly oriented steel fibers and SiO2 nanoparticles", Compos. Part B: Eng., 43(4), 1887-1892.   DOI
15 Khoshakhlagh, A., Nazari, A. and Khalaj, G. (2012), "Effects of Fe2O3 nanoparticles on water permeability and strength assessments of high strength self-compacting concrete", J. Mater. Sci. Technol., 28(1), 73-82.   DOI
16 Kim, S.H. and Aboutaha, R.S. (2004), "Finite element analysis of carbon fiber-reinforcedrnpolymer (CFRP) strengthened reinforced concrete beams", Comput. Concrete, 1(4), 401-416.   DOI
17 Kolahchi, R. and Moniribidgoli, A.M. (2016b), "Size-dependent sinusoidal beam model for dynamic instability of single-walled carbon nanotubes", Appl. Math. Mech., 37(2), 265-274.   DOI
18 Kolahchi, R., Rabani, B.M., Beygipoor, G. and Fakhar, M.H. (2015), "A nonlocal nonlinear analysis for buckling in embedded FG-SWCNT-reinforced microplates subjected to magnetic field", J. Mech. Sci. Technol., 29(9), 3669-3677.   DOI
19 Le, V.P.N., Bui, D.V., Chu, T.H.V., Kim, I.T., Ahn, J.H. and Dao, D.K. (2016), "Behavior of steel and concrete composite beams with a newly puzzle shape of crestbond rib shear connector: An experimental study", Struct. Eng. Mech., 60(6), 1001-1019.   DOI
20 Nazari, A. and Riahi, S. (2010), "The effect of TiO2 nanoparticles on water permeability and thermal and mechanical properties of high strength self-compacting concrete", Mater. Sci. Eng.: A, 528(2), 756-763.   DOI
21 Safari, B.B., Kolahchi, R. and Rabani, B.M. (2016), "Buckling of concrete columns retrofitted with nano-fiber reinforced polymer (NFRP)", Comput. Concrete, 18(5), 1053-1063.   DOI