• Title/Summary/Keyword: silicon carbide (SiC)

Search Result 563, Processing Time 0.027 seconds

Joining of Reaction Bonded SiC using Preceramic Polymer (고분자 세라믹 전구체를 이용한 반응 소결 탄화규소의 접합)

  • Lee, Dong-Hwa;Kim, Deug-Jooug
    • Journal of Powder Materials
    • /
    • v.15 no.1
    • /
    • pp.58-62
    • /
    • 2008
  • Reaction bonded silicon carbide (RBSiC) is an important engineering ceramic because of its high strength and stability at elevated temperatures, and it is currently fabricated using reasonably cheap manufacturing processes, some of which have been used since the 1960s. However, forming complicated shapes from these materials is difficult because of their poor workability. The purpose of this work is to join the reaction-bonded SiC parts using a preceramic polymer as joint material. The manufacturing of ceramic material in the system Si-O-C from preceramic silicon containing polymers such as polysiloxanes has attained particular interest. The mixtures of preceramic polymer and filler materials, such as SiC, Si and MoSi, were used as a paste for the joining of reaction sintered SiC parts. The joining process during the annealing in Ar atmosphere at $1450^{\circ}C$ were described. The maximum strength of the joints was 63 MPa for the specimen joined with 10 vol.% of $MoSi_2$ and 30 vol.% of SiC as filler materials. Fracture occurred in the joining layer. This indicates that the joining strength is limited by the strength of the joint materials.

Synthesis of high purity carbon powders using inductively thermal plasma (유도 열플라즈마 공정을 이용한 고순도 카본분말 합성)

  • Kim, Kyung-In;Han, Kyu-Sung;Hwang, Kwang-Taek;Kim, Jin-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.6
    • /
    • pp.309-313
    • /
    • 2013
  • Silicon carbide (SiC) has recently drawn an enormous industrial interest because of its useful mechanical properties such as thermal resistance, abrasion resistance and thermal conductivity at high temperature. Especially, high purity SiC is applicable to the fields of power semiconductor and lighting emitting diode (LED). In this work, high purity carbon powders as raw material for high purity SiC were prepared by a RF induction thermal plasma. Dodecane ($C_{12}H_{26}$) as hydrocarbon liquid precursor has been utilized for synthesis of high purity carbon powders. It is found that the filtercollected carbon powders showed smaller particle size (10~20 nm) and low crystallinity compared to the reactor-collected carbon powders. The purities of reactor-collected and filter-collected carbon powders were 99.9997 % (5N7) and 99.9993 % (5N3), respectively. In addition, the impurities of carbon powders synthesized by RF induction thermal plasma were mainly originated from the surrounding environment.

Superhard SiC Thin Films with a Microstructure of Nanocolumnar Crystalline Grains and an Amorphous Intergranular Phase

  • Lim, Kwan-Won;Sim, Yong-Sub;Huh, Joo-Youl;Park, Jong-Keuk;Lee, Wook-Seong;Baik, Young-Joon
    • Corrosion Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.206-211
    • /
    • 2019
  • Silicon carbide (SiC) thin films become superhard when they have microstructures of nanocolumnar crystalline grains (NCCG) with an intergranular amorphous SiC matrix. We investigated the role of ion bombardment and deposition temperature in forming the NCCG in SiC thin films. A direct-current (DC) unbalanced magnetron sputtering method was used with pure Ar as sputtering gas to deposit the SiC thin films at fixed target power of 200 W and chamber pressure of 0.4 Pa. The Ar ion bombardment of the deposited films was conducted by applying a negative DC bias voltage 0-100 V to the substrate during deposition. The deposition temperature was varied between room temperature and $450^{\circ}C$. Above a critical bias voltage of -80 V, the NCCG formed, whereas, below it, the SiC films were amorphous. Additionally, a minimum thermal energy (corresponding to a deposition temperature of $450^{\circ}C$ in this study) was required for the NCCG formation. Transmission electron microscopy, Raman spectroscopy, and glancing angle X-ray diffraction analysis (GAXRD) were conducted to probe the samples' structural characteristics. Of those methods, Raman spectroscopy was a particularly efficient non-destructive tool to analyze the formation of the SiC NCCG in the film, whereas GAXRD was insufficiently sensitive.

Analytical and Experimental Validation of Parasitic Components Influence in SiC MOSFET Three-Phase Grid-connected Inverter

  • Liu, Yitao;Song, Zhendong;Yin, Shan;Peng, Jianchun;Jiang, Hui
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.591-601
    • /
    • 2019
  • With the development of renewable energy, grid-connected inverter technology has become an important research area. When compared with traditional silicon IGBT power devices, the silicon carbide (SiC) MOSFET shows obvious advantages in terms of its high-power density, low power loss and high-efficiency power supply system. It is suggested that this technology is highly suitable for three-phase AC motors, renewable energy vehicles, aerospace and military power supplies, etc. This paper focuses on the SiC MOSFET behaviors that concern the parasitic component influence throughout the whole working process, which is based on a three-phase grid-connected inverter. A high-speed model of power switch devices is built and theoretically analyzed. Then the power loss is determined through experimental validation.

Variation of Cone Crack Shape and Impact Damage According to Impact Velocity in Ceramic Materials (세라믹에서 충격속도에 따른 충격손상 및 콘크랙 형상의 변화)

  • Oh, Sang-Yeob;Shin, Hyung-Seop;Suh, Chang-Min
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.383-388
    • /
    • 2001
  • Effects of particle property variation of cone crack shape according to impact velocity in silicon carbide materials were investigated. The damage induced by spherical impact having different material and size was different according to materials. The size of ring cracks induced on the surface of specimen increased with increase of impact velocity within elastic contact conditions. The impact of steel particle produced larger ring cracks than that of SiC particle. In case of high impact velocity, the impact of SiC particle produced radial cracks by the elastic-plastic deformation at impact regions. Also percussion cone was formed from the back surface of specimen when particle size become large and its impact velocity exceeded a critical value. Increasing impact velocity, zenithal angle of cone cracks in SiC material was linearly decreasing not effect of impact particle size. An empirical equation, $\theta=\theta_{st}-\upsilon_p(180-\theta_{st})(\rho_p/\rho_s)^{1/2}/415$, was obtained from the test data as a function of quasi-static zenithal angle of cone crack($\theta_{st}$), the density of impact particle(${\rho}_p$) and specimen(${\rho}_s$). Applying this equation to the another materials, the variation of zenithal angle of cone crack could be predicted from the particle impact velocity.

  • PDF

Comparing Electrical Characteristics of Ga2O3/4H-SiC Heterojunctions with Varying Thickness by Aerosol-Deposition (에어로졸 데포지션 방법으로 증착한 산화막 두께에 따른 갈륨옥사이드/실리콘 카바이드 다이오드의 전기적 특성)

  • Hyun-Woo Lee;Ji-Soo Choi;Young-Hun Cho;Soo-Young Moon;Geon-Hee Lee;Sang-Mo Koo
    • Journal of IKEEE
    • /
    • v.28 no.3
    • /
    • pp.285-289
    • /
    • 2024
  • Utilizing Aerosol Deposition technology, we deposited Ga2O3 films onto 4H-SiC substrates with thicknesses of 1 and 5㎛. Subsequently, we analyzed the impact of oxide film thickness variation on the electrical characteristics of diodes. Experimental findings revealed that thicker films exhibited device operation at lower voltages, whereas thinner films demonstrated comparatively steeper current flow. This underscores the critical importance of controlling film thickness for optimizing the smooth electrical characteristics of the film.

A Study on the Properties of SiC Nanotubes: Molecular Dynamics Simulation (탄화규소 나노튜브의 특성에 관한 연구: 분자동역학 전산모사)

  • 문원하;함정국;황호정
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.6
    • /
    • pp.454-459
    • /
    • 2003
  • We investigate the structure and properties of SiC (Silicon Carbide) nanotubes using molecular dynamics simulation based on the Tersoff bond-order potential. For small diameter tubes, the Si-C bond distance of SiC nanotubes decreases as the nanotube diameter is decreased, due to curvature of the nanotube surface. We find that Young's modulus of SiC nanotubes is somewhat smaller than that of the other nanotubes considered so far. However, Young's modulus for SiC nanotubes is larger than that of ${\beta}$-SiC and almost equal to the experimental value for SiC nanorod and SiC whisker. The strain energy of the SiC nanotubes is also lower than that of the other nanotubes. The lower strain energy of SiC nanotubes raises the possibility of synthesis of SiC nanotubes.

Fabrication of SiC Fiber-SiC Matrix Composites by Reaction Sintering

  • Lim, Kwang-Young;Kim, Young-Wook;Park, Ji-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.4
    • /
    • pp.204-207
    • /
    • 2008
  • This paper presents a new process for producing SiC fiber-SiC matrix(SiC/SiC) composites by reaction sintering. The processing strategy for the fabrication of the SiC/SiC composites involves the following: (1) infiltration of the SiC fiber fabric using a slurry consisting of Si and C precursors, (2) stacking the slurry-infiltrated SiC fiber fabric at room temperature, (3) cross-linking the stacked composites, (4) pyrolysis of the stacked composites, and (5) hot-pressing of the pyrolyzed composites. It was possible to obtain dense SiC/SiC composites with relative densities of >96% and a typical flexural strength of ${\sim}400$ MPa.

Mechanical Properties of Hot-Pressed SiC with Rare-Earth Oxide (희토류 산화물을 첨가한 일축가압소결 탄화규소의 기계적 특성)

  • 최철호;이충선;박광자;조덕호;김영욱
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.2
    • /
    • pp.158-163
    • /
    • 2000
  • Six different SiC ceramics with SiO2-Re2O3 (Re=Yb, Er, Y, Dy, Gd, Sm) as sintering additives have been fabricated by hot-pressing the SiC-Re2Si2O7 compositions at 1850$^{\circ}C$ for 2 hr under a pressure of 25 MPa. The room temperature strneth and the fracture toughness of the hot-pressed ceramics were characterized and compared with those of the ceramics sintered with YAG (Y3Al5O12). Five SiC ceramics (Re=Yb, Er, Y, Dy, Gd) investigated herein showed sintered densities higher than 94% of theoretical. Tthe SiC-Re2Si2O7 compositions showed lower strength and comparable toughness to those from SiC-YAG composition, owing to the chemical reaction between SiO2 and SiC during sintering. SiC ceramics fabricated from a SiC-Y2Si2O7 composition showed the best mechanical properties of 490 MPa and 4.8 MPa$.$m1/2 among the compositions investigated herein.

  • PDF

Microstructures and Mechanical Properties of SiC Containing $SiC_{platelet}$ Seeds of Various Size (여러 가지 크기의 $SiC_{platelet}$ Seed를 함유한 SiC 세라믹스의 미세구조 및 기계적 특성)

  • Choi, Myoung-Je;Park, Chan;Park, Dong-Soo;Kim, Hai-Doo
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.10
    • /
    • pp.1094-1101
    • /
    • 1999
  • Liquid phase sintered silicon carbides were obtained by sintering of $\alpha$-SiC and $\beta$-SiC powders as starting materials at 2173K and 2273K respectively. The SiCplatelet seeds of different sizes were obtained by a repeated ball milling and sedimentation. Their mean size (d50) were 2.217 ${\mu}{\textrm}{m}$ 13.67 ${\mu}{\textrm}{m}$, 22.17${\mu}{\textrm}{m}$ respectively 6wt%Al2O3-4 wt% Y2O3 was used as the sintering additives for the liquid phase sintering. The two silicon carbides had a bimodal microstructure consisting of small matrix grains and large platelike grains when the SiCplatelet seeds were added. In the case of the $\beta$-SiC the appreciable phase transformation occurred as sintering temperature increased from 2173K to 2273K and resulted in matrix shape change from equiaxed into platelike grains. In contrast there was no shape change for the $\alpha$-SiC. The size of large grains in the $\alpha$-SiC of large grains in the $\alpha$-SiC was larger than that of the large grains in the $\beta$-SiC These results suggested that the growth of the $\alpha$-SiCplatelet in the $\alpha$-SiC matrix was more favored than that of the $\alpha$-SiCplatelet in the $\beta$-SiC matix. The three point flexural strength decreased as the added seed size increased. Fracture toughness values of samples sintered at 2273K were higher than those of samples sintered at 2173K.

  • PDF