• Title/Summary/Keyword: silica

Search Result 5,294, Processing Time 0.032 seconds

Thermal and Mechanical Properties of Epoxy/Micro- and Nano- Mixed Silica Composites for Insulation Materials of Heavy Electric Equipment

  • Park, Jae-Jun;Yoon, Ki-Geun;Lee, Jae-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.3
    • /
    • pp.98-101
    • /
    • 2011
  • A 10 nm nano-silica was introduced to a conventional 3 ${\mu}M$ micro-silica composite to develop an eco-friendly new electric insulation material for heavy electric equipment. Thermal and mechanical properties, such as glass transition temperature (Tg), dynamic mechanical analysis, tensile and flexural strength, were studied. The mechanical results were estimated by comparing scale and shape parameters in Weibull statistical analysis. The thermal and mechanical properties of conventional epoxy/micro-silica composite were improved by the addition of nano-silica. This was due to the increment of the compaction via the even dispersion of the nano-silica among the micro-silica particles.

Application Properties of Ultra Light Weight Silica Aerogel to Polyurethane Membrane (극초경량 실리카 에어로겔의 폴리우레탄 멤브레인 적용 특성)

  • Min, Munhong;Jeong, Cheonhee;Yoon, Seokhan;Yang, Junghan;Kim, Taekyeong
    • Textile Coloration and Finishing
    • /
    • v.25 no.4
    • /
    • pp.279-286
    • /
    • 2013
  • Application properties of ultra light weight silica aerogel toward polyurethane membranes were investigated. From the results of pre-milling process of the silica aerogel, the solvent for dispersion of the aerogel was determined for methyl ethyl ketone and its content in the solvent was determined by 30%. Using this aerogel dispersion, the polyurethane membranes were prepared according to the mixing amount of silica aerogel and various properties of the membranes were investigated. As results, the optimum mixing amount of silica aerogel inside polyurethane membranes was decided at 11%, because the improvement of light weight property, air permeability, and moisture vapor permeability were improved upto 11% of silica aerogel content, maintaining the water penetration resistance almost unchanged.

The Control of Electrostatic Characteristics in Toner Type Paper-like Display

  • Lee, Sung-Guk;Kwon, Soon-Hyung;Cho, Won-Ki;Song, Moon-Bong;Kim, Young-Woon
    • Journal of Information Display
    • /
    • v.8 no.1
    • /
    • pp.14-17
    • /
    • 2007
  • The toner type paper-like display (PLD) has been developed with two polymer particles having opposite polarity composed of polymer, colorant and external additives (nano-sized silica). Nano-sized silica with triboelectric charge was used for the charge control agent (CCA) and influenced on the electrostatic properties of the silica-coated polymer particles. The surface morphology and the cohesiveness of silica-coated polymer particles were changed with the silica coating time. From these results, it was verified that the PLD cell using silica-coated particles (200 seconds) shows a good white appearance and low driving voltage.

Induced Second Order Optical Nonlinearity in Thermally Poled Silica Glasses (Poling된 실리카 유리의 2차비선형광학효과와 공간전하분극의 관계)

  • 신동욱
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.12
    • /
    • pp.1374-1380
    • /
    • 1999
  • The cause of Scond Harmonic Generation (SHG) in thermally poled silica glass is suggested basedon the electrical and dielectric relaxation measurements. The absorption currents as functions of time were measured for various types of silica glasses and analyzed by the theory of Space Charge Polarization. Space charge polarization occurs when an ionic conducting material is subjected to dc electric field with blocking electrode. Thermal poling performed to induce SHG in silica glass is basically identical to the process generating space charge polarization. Hence it was found that gene-ration removal reproduction and temperature dependence of SHG in poled silica is directly related to those of space charge polarization. It turned out that the fundamental parameters governing the SHG in poled silica are charge carrier concentration and mobility. Based on the theory of space charge polarization and experimental results of electrical rela-xation the method to increase the intensity of SHG is proposed.

  • PDF

Carbon-Silica Membranes Derived from Polyimide/Silica Composites for Gas Separation

  • Lee, Young-Moo;Park, Ho-Bum;Kim, Myung-Jun;Jang, Jeong-Gyu
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.47-50
    • /
    • 2003
  • Carbon-silica membranes were Prepared by Pyrolyzing polyimide/silica composite obtained from ill-situ polymerization of alkoxy silanes via sol-gel reaction. In this study, effects of silica content and silica network in polyimide matrix were focused on the gas permeation and separation properties of the final carbon-silica membrane. The membranes prepared were characterized with a field emission scanning electron microscopy (FE-SEM), a solid state $^{29}$ Si nuclear magnetic resonance spectroscopy ($^{29}$ Si-NMR), an electron spectroscopy for chemical analysis (ESCA), a thermogravimetric analysis (TGA) and gas permeation tests.

  • PDF

Bond Properties of Structural Poly Vinyl Alcohol Fiber in Cement Based Composites with Metakaolin and Silica Fume Contents (메타카올린 및 실리카퓸 첨가율에 따른 구조용 PVA 섬유와 시멘트 복합재료의 부착특성)

  • Lee, Jung-Woo;Park, Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.5
    • /
    • pp.9-16
    • /
    • 2012
  • In this study, the effect of metakaoline and silica fume on the bond performances of structural polyvinyl alcohol (PVA) fiber in cement mortar, including bond strength, interface toughness, and microstructure analysis are presented. Metakaoline and silica fume contents ranging from 0 % to 15 % are used in the mix proportions. Pullout tests are conducted to measure the bond performance of PVA fiber from cement mortar. Test results showed the incorporation of metakaoline and silica fume can effectively enhance the PVA fiber-cement mortar interfacial properties. Bond strength and interface toughness increased with metakaoline and silica fume content up to 10 % in cement mortar and decreased when the metakaoline and silica fume content reached 15 %. The microstructural observation confirms the findings on the interface bond mechanism drawn from the fiber pullout test results.

Excitation and Emission Properties of Adsorbed U(VI) on Amorphous Silica Surface

  • Jung, Euo Chang;Kim, Tae-Hyeong;Kim, Hee-Kyung;Cho, Hye-Ryun;Cha, Wansik
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.4
    • /
    • pp.497-508
    • /
    • 2020
  • In the geochemical field, the chemical speciation of hexavalent uranium (U(VI)) has been widely investigated by performing measurements to determine its luminescence properties, namely the excitation, emission, and lifetime. Of these properties, the excitation has been relatively overlooked in most time-resolved laser fluorescence spectroscopy (TRLFS) studies. In this study, TRLFS and continuous-wave excitation-emission matrix spectroscopy are adopted to characterize the excitation properties of U(VI) surface species that interact with amorphous silica. The luminescence spectra of U(VI) measured from a silica suspension and silica sediment showed very similar spectral shapes with similar lifetime values. In contrast, the excitation spectra of U(VI) measured from these samples were significantly different. The results show that distinctive excitation maxima appeared at approximately 220 and 280 nm for the silica suspension and silica sediment, respectively.

The Effect of Fumed Silica Loading on the Thermal Stability of Fluorosilicone Composites

  • Muhammet Iz;Jinhyok Lee;Myungchan Choi;Yumi Yun;Hyunmin Kang;Jungwan Kim;Jongwoo Bae
    • Elastomers and Composites
    • /
    • v.57 no.4
    • /
    • pp.165-174
    • /
    • 2022
  • The effect of fumed silica loading on the thermal stability and mechanical properties of fluorosilicone (FVMQ) rubber was investigated. The distribution of fumed silica inside FVMQ was characterized using scanning electron microscopy, and the thermal stability of composites was evaluated using thermogravimetric analysis and by the changes in mechanical performance during thermo-oxidative aging. The function mechanism of fumed silica was studied by Fourier transform infrared spectroscopy. The results show that with increasing silica content, the crosslink density of composites, the modulus at 100%, and tensile strength also increased, whereas the elongation at break decreased. Furthermore, increasing the silica content of composites increased the initial decomposition temperature (Td) and residual weight of the composite after exposure to nitrogen. In addition, the thermal oxidative aging experiment demonstrated improved aging resistance of the FVMQ composites, including lower change in tensile strength, elongation at break, and modulus at 100%.

Synthesis of spherical silica aerogel powder by emulsion polymerization technique

  • Hong, Sun Ki;Yoon, Mi Young;Hwang, Hae Jin
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc1
    • /
    • pp.145-148
    • /
    • 2012
  • Spherical silica aerogel powders were fabricated via an emulsion polymerization method from a water glass. A water-in-oil emulsion, in which droplets of a silicic acid solution are emulsified with span 80 (surfactant) in n-hexane, was produced by a high power homogenizer. After gelation, the surface of the spherical silica hydrogels was modified using a TMCS (trimethylchlorosilane)/n-hexane solution followed by solvent exchange from water to n-hexane. Hydrophobic silica wet gel droplets were dried at 80 ℃ under ambient pressure. A perfect spherical silica aerogel powder between1 to 12 ㎛ in diameter was obtained and its size can be controlled by mixing speed. The tapping density, pore volume, and BET surface area of the silica aerogel powder were approximately 0.08 g·cm-3, 3.5 ㎤·g-1 and 742 ㎡·g-1, respectively.

Charge Formation in Epoxy/silica Composites (에폭시/실리카 복합재료의 전하축적 현상)

  • 남진호;이창용;이미경;서광석;강동필
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.107-110
    • /
    • 1995
  • Space charge formation in epoxy/silica composites has been investigated by the pulsed electroacoustic (PEA) method. The addition of silica resulted in homocharge formation, which attributed to the interfacial trapping of injected charge at epoxy/silica interfaces, Homocharge accumulation with increase of voltage and silica content.

  • PDF