DOI QR코드

DOI QR Code

The Effect of Fumed Silica Loading on the Thermal Stability of Fluorosilicone Composites

  • Muhammet Iz (Korea Institute of Footwear & Leather Technology) ;
  • Jinhyok Lee (Korea Institute of Footwear & Leather Technology) ;
  • Myungchan Choi (Korea Institute of Footwear & Leather Technology) ;
  • Yumi Yun (Korea Institute of Footwear & Leather Technology) ;
  • Hyunmin Kang (Korea Institute of Footwear & Leather Technology) ;
  • Jungwan Kim (Korea Institute of Footwear & Leather Technology) ;
  • Jongwoo Bae (Korea Institute of Footwear & Leather Technology)
  • Received : 2022.10.24
  • Accepted : 2022.12.10
  • Published : 2022.12.31

Abstract

The effect of fumed silica loading on the thermal stability and mechanical properties of fluorosilicone (FVMQ) rubber was investigated. The distribution of fumed silica inside FVMQ was characterized using scanning electron microscopy, and the thermal stability of composites was evaluated using thermogravimetric analysis and by the changes in mechanical performance during thermo-oxidative aging. The function mechanism of fumed silica was studied by Fourier transform infrared spectroscopy. The results show that with increasing silica content, the crosslink density of composites, the modulus at 100%, and tensile strength also increased, whereas the elongation at break decreased. Furthermore, increasing the silica content of composites increased the initial decomposition temperature (Td) and residual weight of the composite after exposure to nitrogen. In addition, the thermal oxidative aging experiment demonstrated improved aging resistance of the FVMQ composites, including lower change in tensile strength, elongation at break, and modulus at 100%.

Keywords

Acknowledgement

This study was funded by the Ministry of Trade, Industry and Energy and the Korea Institute of Industrial Technology Evaluation and Management (KEIT) in 2020 (Part Development using Fluorosilicone Materials, 1415179808, 2001115; Ministry of Trade, Industry and Energy).

References

  1. C. M. Bhuvaneswari, R. Dhanasekaran, S. K. R. Chakravarthy, S. S. Kale, and G. Gouda, "Evaluation of fluorosilicone silicone elastomer blend for aeronautical fuel system", Prog. Rubber Plast. Recycl. Technol., 31, 207 (2015).
  2. Y. Dai, X. Ruan, F. Bai, M. Yu, H. Li, Z. Zhao, and G. He, "High solvent resistance PTFPMS/PEI hollow fiber composite membrane for gas separation", Appl. Surf. Sci., 360, 164 (2016).
  3. J. Y. Meng, Y. Y. Wang, Y. P. Wang, and Z. Q. Ding, "Effect of cold atmospheric plasma treatment on hydrophilic properties of fluorosilicone rubber", Surf. Interface Anal., 48, 1429 (2016).
  4. X. Li, K. Zhang, Y. Zhao, K. Zhu, and X. Yuan, "Enhancement of icephobic properties based on UV-curable fluorosilicone copolymer films", RSC Adv., 5, 90578 (2015).
  5. C. Xu, Y. Wang, B. Lin, X. Liang, and Y. Chen, "Thermoplastic vulcanizate based on poly(vinylidene fluoride) and methyl vinyl silicone rubber by using fluorosilicone rubber as interfacial compatibilizer", Mater. Des., 88, 170 (2015).
  6. H. Cheng, Y.-N. Zhou, and Z.-H. Luo, "Enhanced understanding and implementation of the self-assembly of fluorosilicone double-hydrophobic diblock copolymers in dilute solutions from thermodynamic perspective: the effect of different preparation factors", Colloids Surf., 436, 990 (2013).
  7. C. Bian, J. Tan, D. Ma, Y. Li, and J. Zhang, "Preparation and characterization of polymethyltrifluoropropylsilicone modified acrylonitrile-butadiene rubber/fluorosilicone rubber blend", J. Appl. Polym. Sci., 132, 42328 (2015).
  8. M. Dawir, "Sealing in the automotive industry with liquid fluoro-silicone elastomers", Seal. Technol., 7, 10 (2008).
  9. A. Smitha, R. S. Rajeev, K. Krishnaraj, N. Sreenivas, S. K. Manu, C. Gouri, and V. Sekkar, "Thermal protection characteristics of polydimethylsiloxaneorganoclay nanocomposite", Polym. Degrad. Stab., 144, 281 (2017).
  10. M. C. Celina, "Review of polymer oxidation and its relationship with materials performance and lifetime prediction", Polym. Degrad. Stab., 98, 2419 (2013).
  11. J. Xu, Y. Zhang, Y. B. Feng, T. Qiu, G. Wang, and R. Liu, "Electromagnetic and mechanical properties of carbonyl iron powder-filled methyl vinyl silicone rubber during thermal aging", Polym. Compos., 39, 2897 (2018).
  12. Y. Shi, G. Huang, Y. Liu, Y. Qu, D. Zhang, and Y. Dang, "Synthesis and thermal properties of novel room temperature vulcanized (RTV) silicone rubber containing POSS units in polysioxane main chains", J. Polym. Res., 20, 1 (2013).
  13. B. Shentu, T. Gan, and Z. Weng, "Modification of Fe2O3 and its effect on the heat resistance of silicone rubber", J. Appl. Polym. Sci., 113, 3202 (2009).
  14. C. Min, Y. Huang, and L. Liu, "Effect of nanosized ferric oxide on the thermostability of methylsilicone resin", J. Mater. Sci., 42, 8695 (2007).
  15. Z. Su, "Interfacial reaction of stannic oxide in silicone rubber at 300℃", J. Appl. Polym. Sci., 73, 2779 (1999).
  16. Z. Yang, S. Han, R. Zhang, S. Feng, C. Zhang, and S. Zhang, "Effects of silphenylene units on the thermal stability of silicone resins", Polym. Degrad. Stabil., 96, 2145 (2011).
  17. X. Xu, J. Liu, P. Chen, D. Wei, Y. Guan, X. Lu, and H. Xiao, "The effect of ceria nanoparticles on improving heat resistant properties of fluorosilicone rubber", J. Appl. Polym. Sci., 133, 42 (2016).
  18. Z. Osawa, "Role of metals and metal-deactivators in polymer degradation", Polym. Degrad. Stabil., 20, 203 (1988).
  19. C. Sirisinha, S. Phoowakeereewiwat, and P. Saeoui, "Cure and dynamic mechanical properties in peroxide-cured isoprene rubber: effects of stearic acid and amine-based antioxidant", Eur. Polym. J., 40, 1779 (2004).
  20. S. Ziraki, S. M. Zebarjad, and M. J. Hadianfard, "A study on the tensile properties of silicone rubber/polypropylene fibers/silica hybrid nanocomposites", J. Mech. Behav. Biomed., 57, 289 (2016).
  21. A. V. Galanti and L. H. Sperling, "Morphology and structure of silica agglomerates in silica-reinforced silicone rubber", J. Appl. Polym. Sci., 14, 2785 (1970).
  22. H. Hu, L. Zhao, J. Liu, Y. Liu, J. Cheng, J. Luo, Y. Liang, Y. Tao, X. Wang, and J. Zhao, "Enhanced dispersion of carbon nanotube in silicone rubber assisted by graphene", Polymer, 53, 3378 (2012).
  23. L. Gan, S. Shang, C. W. M. Yuen, S. X. Jiang, and N. M. Luo, "Impact of vinyl concentration of a silicone rubber on the properties of the graphene oxide filled silicone rubber composites", Compos., 69, 237 (2015).
  24. B. B. Boonstra, H. Cochrane, and E. M. Dannenberg, "Reinforcement of silicone rubber by particulate silica", Rub. Chem. Technol., 48, 558 (1975).
  25. T. H. Thomas and T. C. Kendrick, "Thermal analysis of polysiloxanes. II. Thermal vacuum degradation of polysiloxanes with different substituents on silicon", J. Polym. Sci., 8, 1823 (1790).
  26. M. J. Kang, F. L. Jin, and S. J. Park, "Influence of ozonetreated silica nanoparticles on mechanical interfacial behavior and thermal stability of silicone composites", J. Nanosci. Nanotechnol., 18, 6244 (2018).
  27. M. T. Nazir, B. T. Phung, M. Hoffman, S. Yu, and S. Li, "Micro-AlN/nano-SiO2 co-filled silicone rubber composites with high thermal stability and excellent dielectric properties", Mater. Lett., 209, 421 (2017).
  28. S. Choi, "Improvement of properties of silica-filled natural rubber compounds using polychloroprene", J. Appl. Polym. Sci., 83, 2609 (2002).
  29. J. Lee, N. Park, S. Lim, B. Ahn, W. Kim, H. Moon, H. Paik, and W. Kim, "Influence of the silanes on the crosslink density and crosslink structure of silica-filled solution styrene butadiene rubber compounds", Compos. Interface, 24, 711 (2017).
  30. M. Iz, D. Kim, K. Hwang, G. Ryu, S. Song, and W. Kim, "The effects of liquid butadiene rubber and resins as processing aids on the physical properties of SSBR/silica compounds", Elast. Compos., 55, 289 (2020).
  31. P. Vondracek and A. Pouchelon, "Ammonia-induced tensile set and swelling in silica-filled silicone rubber", Rub. Chem. Technol., 63, 202 (1990).
  32. P. Rybin'ski, W. Zukowski, and D. Bradlo, "Influence of cenosphere particles on thermal properties composites of silicon rubber", J. Therm. Anal. Calorim., 122, 1307 (2015).
  33. S. Hamdani, C. Longuet, D. Perrin, J. M. Lopez-cuesta, and F. Ganachaud, "Flame retardancy of silicone-based materials", Polym. Degrad. Stab., 94, 465 (2009).
  34. D. Z. Chen, J. R. Nie, S. P. Yi, W. Wu, Y. L. Zhong, and J. Liao, "Thermal behaviour and mechanical properties of novel RTV silicone rubbers using divinyl-hexa[(trimethoxysilyl)ethyl]-POSS as cross-linker", Polym. Degrad. Stab., 95, 618 (2010).
  35. G. Camino, S. M. Lomakin, and M. Lazzari, "Polydimethylsiloxane thermal degradation Part 1. Kinetic aspects", Polymer, 42, 2395 (2001).