Carbon-Silica Membranes Derived from Polyimide/Silica Composites for Gas Separation

Young Moo Lee*, Ho Bum Park, Myung Jun Kim and Jeong Gyu Jang

National Research Laboratory for Membrane, School of Chemical Engineering, College of Engineering, Hanyang University, Seoul 133-791, South Korea
*Corresponding author

Fax: 02-2291-5982 E-mail: ymlee@hanyang.ac.kr

ABSTRACT

Carbon-silica membranes were prepared by pyrolyzing polyimide/silica composite obtained from insitu polymerization of alkoxy silanes via sol-gel reaction. In this study, effects of silica content and silica network in polyimide matrix were focused on the gas permeation and separation properties of the final carbon-silica membrane. The membranes prepared were characterized with a field emission scanning electron microscopy (FE-SEM), a solid state ²⁹Si nuclear magnetic resonance spectroscopy (²⁹Si-NMR), an electron spectroscopy for chemical analysis (ESCA), a thermogravimetric analysis (TGA) and gas permeation tests.

INTRODUCTION

Membrane-based technology has been presently settled down at several industrial processes and application. Particularly, membrane-based gas separation is a relatively young and eye-opening technology and accounts for US\$ 230 million per year, but is growing fast with a rate higher than 15% a year. Up to now, polymer membranes are used commercially to separate air, to remove hydrogen from mixtures with nitrogen or hydrocarbons in petrochemical processing applications.² Polymer membranes, however, have an obvious tradeoff relation between permeability and selectivity: Polymers that are more permeable are commonly less selective and vice versa.³ In addition, polymeric membrane do not operate well in corrosive and high temperature environments. Therefore, the development of new membrane materials could play a significant role in the future of membrane-based separation field. Amongst membrane materials being watched with keen interest, carbonaceous materials with ultramicroporosity have been extensively investigated owing to their excellent permeability and permselectivity. Carbon membranes are effective for separating gas mixtures with similar molecular sizes such as O2/N2, CO2/CH4, and CO2/N2, and have greater mechanical strength and are able to withstand higher pressure differences for a given wall thickness. In addition, feed pressure does not greatly affect the permeation properties of carbon membranes and the permeation properties of carbon membraens is not time dependent. Finally, carbon membranes have superior stability in the presence of organic vapor or solvent and non-oxidizing acid or base environments and higher thermal stability. In spite of these many advantages, carbon is very susceptible to oxidation, which is an obvious drawback to easy and reproducible fabrication of the carbon membranes. Therefore, combining carbon with silica or silicon-containing compounds as attempted in previous 4-6 and present study seems to be a natural choice for the next step in expanding the modern molecular separation science and technology.

EXPERIMENTAL

For the preparation of polyimide/silica (PI/SiO₂) composites, a calculated amount of tetraethoxysilane (TEOS; previously diluted in ethanol) was added to the poly(amic acid) (PAA) solution derived from pyromellitic dianhydride (PMDA) and 4,4'-oxydianiline (ODA), which was diluted to 10 wt.-% with N-methyl-2-pyrrolidinone (NMP). 0.15 M HCl solution, also diluted with

NMP, was added to PAA/TEOS solution mixture at room temperature under a nitrogen atmosphere with fast agitation (water/alkoxide mole ratio is 4:1). The compositions of the silica in PI/SiO₂ matrix were 10, 20, and 30 in wt%, respectively. For the preparation of polyimide/modified silica (PI/m-SiO₂), dimethyldiethoxysilane (DMDEOS) was added into PAA/TEOS solution having a constant TEOS amount in order to change silica network in polyimide/silica matrix. The compositions of the DMDEOS/TEOS in PI/m-SiO₂ matrix were 25 and 50 in mol%, respectively. After 24 h of reaction, a homogeneous solution was cast on a Teflon-coated glass slide and dried for 6 h at 40 °C. The resulting PAA/SiO2 and PAA/m-SiO2 films were thermally imidized at 100, 200, and 300 °C for 1 h each step. The morphology, thermal, and chemical properties of PI/SiO₂ and PI/m-SiO₂ membranes were studied with FE-SEM, ²⁹Si-NMR, ESCA, and TGA. After that, C/SiO₂ and C/m-SiO₂ membranes were prepared by an inert pyrolysis of PI/SiO₂ and PI/m-SiO₂ membranes up to 600 °C using a predetermined pyrolysis protocol. To evaluate the gas separation capability of the C/SiO₂ and C/m-SiO₂ membranes prepared in this study, gas permeation test was carried out to measure the pure component gas permeability through the membranes selecting He, H2, CO2, O2, and N2. Gas permeability was measured at 25 °C with a high-vacuum (<10⁵ Torr) time-lag method under the pressure difference of 76 cmHg. All measurements were conducted at ambient temperature.

RESULTS AND DISCUSSION

Characterization

(1) Solid ²⁹Si-NMR: Figure 1 illustrates the solid state ²⁹Si-NMR spectra of PI/SiO₂ and PI/m-SiO₂ composite membrane prepared by in-situ polymerization of TEOS and TEOS/DMDEOS via sol-gel reaction. The peaks at -20 ppm are due to the presence of D unit of dimethylsiloxane group, indicating of introduction of DMDEOS into the silica network. In the case of PI/SiO₂, only Q units were detected in the NMR spectra. Although the solid state ²⁹Si-NMR spectra were not sufficiently to deduce quantitatively the amount of modified silica phase, we were able to confirm addition of DMDEOS in silica network successively.

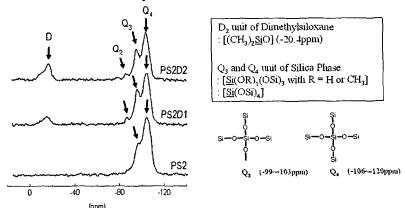
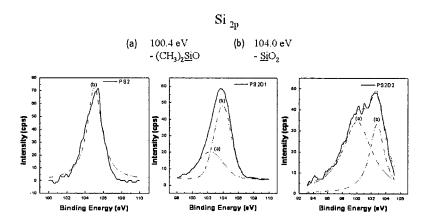



Fig.1 Solid state ²⁹Si-NMR spectra of PI/SiO₂ and PI/m-SiO₂ membranes

(2) ESCA: Figure 2 shows the Si_{2p} binding energy of PI/SiO₂ and PI/m-SiO₂ membranes using ESCA. The PI/SiO₂ had a silicon binding energy of 104.0 eV. This indicates the existence of a pure silica phase. On the other hand, in the case of the PI/m-SiO₂, the silicon binding energy band was broader owing to detection of dimethylsiloxane group at 100.0 eV. This means the coexistence of silica and dimethylsiloxane group in the silica network. That is, a partial change of silica network was well achieved in this experiment.

Gas Permeation Experiments

Tables 1 and 2 show the gas permeation data of PI/SiO₂ and PI/m-SiO₂ and their pyrolyzed products, C/SiO₂ and C/m-SiO₂ membranes. Effect of silica content on the gas permeation properties of polyimide matrix and carbon matrix was summarized in Table 1. Generally, increase of silica content obtained from sol-gel reaction in polyimide matrix led to decline of both gas permeabilities and permselectivities as compared with PI/SiO₂ having the lowest silica content. In this study, any coupling agents, which are usually used to prevent severe phase separation between silica particles and organic polymer matrix, were not considered in the preparation of PI/SiO₂ membranes. Therefore, macroscopic phase separation was observed even in PI/SiO₂ with10 wt% silica content. The phase separation might cause large interfacial gaps between polyimide and silica domains, which penetrants could permeate through these interfacial gaps rather than silica domains in continuous polyimide matrix. These behaviors continued to the gas permeation properties of C/SiO₂ membranes derived from the PI/SiO₂ membranes. Heat treatment at a high temperature could make the silica network in the carbon matrix denser and also interfacial gaps larger. Interestingly, the gas permeation behaviors of precursors and their C/SiO₂ membranes are very similar, which are due to using thermal stable phases, that is, polyimide and silica phases.

Table 1. Gas Permeation Results of PI/SiO₂ membranes and C/SiO₂ membranes at 25 °C.

Sample	Permeability (Barrer)				Selectivity				
code	He	H_2	CO ₂	O_2	N ₂	He/N ₂	H ₂ /N ₂	CO ₂ /N ₂	O ₂ /N ₂
PS1	35.5	37.7	14.0	3.5	0.63	56.0	59.5	22.1	5.6
PS2	24.6	27.2	9.9	2.5	0.47	52.5	58.0	21.1	5.4
PS3	24.7	28.2	10.4	2.6	0.49	50.3	57.4	21.1	5.3
CS1	3469	9807	2292	573	61.6	56.3	159.2	37.2	9.3
CS2	2669	7039	1897	436	55.0	48.2	127.1	34.2	7.9
CS3	3219	9809	2673	659	103.0	31.3	95.2	26.0	6.4

In the case of PI/m-SiO₂ membranes, the gas permeabilities increased with more addition of DMDEOS as a silica network modifier. Introduction of a silica network modifier in PI/SiO₂ matrix would lead to more sparse silica structure. Increase of permeability and decease of selectivity are supported to this explanation. For C/m-SiO₂ membranes, we felt that proper control of silica network embedded in carbon matrix would make possible to improve the gas permeation performances of the pyrolytic carbon-silica membranes. Consequently, incorporation of silica into

carbon membranes will help the improvement of gas flux in the carbon membranes without a large sacrifice of gas selectivity as shown in Figure 3.

Table 2 Gas Permeation	Results of PI/m-SiO	2 membranes and C/m-SiO	o membranes at 25 °C
iudio 2. Guo i dillibutioni	itobalo of film blo		, inclination at 25 °C.

Sample	Permeability (Barrer)				Selectivity				
Code	He	H_2	CO_2	O_2	$\overline{N_2}$	He/N ₂	H_2/N_2	CO ₂ /N ₂	O_2/N_2
PS2	24.6	27.2	10.9	2.5	0.47	58.0	52.5	23.2	5.4
PS2D1	29.4	31.1	12.8	3.0	0.51	61.2	57.9	25.2	5.9
PS2D2	59.3	67.0	29.1	7.7	1.36	49.3	43.7	21.4	5.6
CS2	2669	7039	1897	436	55	48.2	127.1	34.2	7.9
CS2D1	3230	9021	4120	893	125	25.8	72.2	33.0	7.1
CS2D2	3755	10689	6679	1520	220	17.0	48.5	30.3	6.9

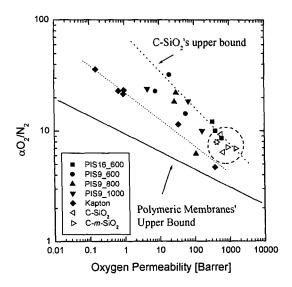


Fig. 3. Tradeoff relationship between O₂ permeability and O₂/N₂ permselectivity.

ACKNOLWDEMENTS

The authors would like to gratefully acknowledge the financial support from the National Research Laboratory (NRL) Program of the Korea Institute of Science and Technology for Evaluation and Planning (KISTEP).

REFERENCES

- 1. S. P. Nunes, K.-V. Peinemann, *Membrane Technology in the Chemical Industry*, Wiley, New York, 2001.
- 2. J. M. S. Henis, Commercial and Practical Aspects of Gas Separation Membranes, CRC Press, Boca Raton, FL, 1994.
- 3. B. D. Freeman, Macromolecules, 32, 375 (1999).
- 4. H. B. Park and Y. M. Lee, Membr. J., (Korea) 12(2), 107 (2002).
- 5. H. B. Park, I. Y. Suh, and Y. M. Lee, Chem. Mater., 14(7), 3034 (2002).
- 6. H. B. Park and Y. M. Lee, J. Membr. Sci., 213, 263 (2003).