• Title/Summary/Keyword: silage maize

Search Result 55, Processing Time 0.02 seconds

Effects of Ensiling Alfalfa with Whole-crop Maize on the Chemical Composition and Nutritive Value of Silage Mixtures

  • Ozturk, Durmus;Kizilsimsek, Mustafa;Kamalak, Adem;Canbolat, Onder;Ozkan, Cagri Ozgur
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.4
    • /
    • pp.526-532
    • /
    • 2006
  • The aim of this study was to evaluate the chemical composition, in vitro DM degradability, ME and OMD of alfalfa-maize silage mixtures in comparison to pure maize and alfalfa silages, and to test the existence of associative effects of ensiling alfalfa forage with whole-crop maize using the in vitro gas production technique. Ensiling alfalfa with whole-crop maize had a significant (p<0.001) effect on chemical composition, pH, in vitro DM degradability, OMD and estimated ME values of mixtures. DM content of the resultant silages significantly increased with increasing proportion of whole-crop maize in the mixtures, whereas the pH value, crude protein (CP), acid detergent fibre (ADF) and ash contents of mixtures decreased due to the dilution effect of whole-crop maize which was low in CP, ADF and ash. The pH values of all alfalfa-maize silage mixtures were at the desired level for quality silage. Gas production of alfalfa-maize silage mixtures at all incubation times except 12 h increased with increasing proportion of whole-crop maize. When alfalfa was mixed with whole-crop maize in the ratio 40:60, ME and OMD values were significantly (p<0.001) higher than other silages. Maximum gas production ($A_{gas}$) ranged from 65.7 to 78.1 with alfalfa silage showing the lowest maximum gas production. The results obtained in this study clearly showed that maximum gas production increased with increased percentage of whole-crop maize in the silage mixtures (r = 0.940, p<0.001). It was concluded that ensiling alfalfa with whole-crop maize improved the pH, OMD and ME values. However, trials with animals are required to see how these differences in silage mixtures affect animal performance.

The Intake and Palatability of Four Different Types of Napier Grass (Pennisetum purpureum) Silage Fed to Sheep

  • Manyawu, G.J.;Sibanda, S.;Chakoma, I.C.;Mutisi, C.;Ndiweni, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.6
    • /
    • pp.823-829
    • /
    • 2003
  • Four different types of silage from new cultivars of Napier grass (Pennisetum purpureum), cv. NG 1 and NG 2, were fed to eight wethers in order to evaluate their preference and intake by sheep. The silages were prepared from direct-cut NG 1 herbage; pre-wilted NG 1 herbage; NG 1 herbage with maize meal (5% inclusion) and NG 2 herbage with maize meal (5% inclusion). All silages were palatable to sheep. Maize-treated silage had high quality fermentation, characterized by high Fleig scores and low pH, volatile fatty acids (VFA) and ammoniacal nitrogen contents. The pH, Fleig score, in vitro digestible organic matter (IVDOMD) and ammoniacal-N contents for maize-treated cv. NG 1 silage were 3.7, 78, $540g\;kg^{-1}$ dry matter (DM ) and $0.18g\;kg^{-1}$ DM whereas, in maize-treated cv. NG 2 they were 3.6, 59, $^458g\;kg{-1}$ DM and $0.18g\;kg^-1$ DM, respectively. The superior quality of maize-treated silages made them more preferable to sheep. Among the maize-fortified silages, palatability and intake were significantly (p<0.001) greater with cv. NG 1. Although direct-cut silage had better fermentation quality compared to wilted silage, wilted silage was significantly (p<0.001) more preferable to sheep. However, there were no significant differences (p<0.05) in the levels of preference and intake of wilted silage compared to maize-treated cv. NG 2 silage, even though the latter tended to be more palatable. There were indications that high pH (4.6 vs 3.5) and IVDOMD content (476 vs $457g\;kg^{-1}%$ DM) of wilted silage contributed to higher intake, compared to direct-cut silage. It was generally concluded that pre-wilting and treatment of Napier grass with maize meal at ensiling enhances intake and palatability.

Influence of Maize and Cowpea Intercropping on Fodder Production and Characteristics of Silage

  • Azim, A.;Khan, A.G.;Nadeem, M.A.;Muhammad, D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.6
    • /
    • pp.781-784
    • /
    • 2000
  • A study was conducted to examine the influence of maize (Zea mays) and cowpea (Vigna unguniculata) intercropping on fodder biomass production and silage characteristics. Maize fodder was cultivated alone and intercropped with cowpea at seed ratio of 85:15 and 70:30. Fodder was harvested at heading stage (at about 35% dry matter). The data indicated significant increase in biomass and crude protein production of maize intercropped with cowpea at seed ratio 70:30 followed by seed ratio 85:15 as compared to maize alone. However, no (p>0.05) difference was observed in TDN production among the three treatments. Four types of silages from, I) maize alone, II) maize and cowpea (85:15), III) maize and cowpea (70:30) and IV) maize supplemented with 2.5% urea were prepared. After 60 days of ensiling period, silage samples were analysed for proximate composition and fermentation characteristics. Crude protein and lactic acid values of silages I, II, III and IV were 8.52, 9.82, 14.90 and 13.96% and 9.00, 9.38, 10.86 and 7.43%; respectively. In situ dry matter digestibility was maximum in silage III followed by silages II, IV and I. The results suggested that intercropping of maize and cowpea at seed ratio 70:30 increased fodder production and produced quality silage.

FEEDLOT FATTENING OF SHEEP IN PAKISTAN

  • Jadoon, J.K.;Syed, A.H.;Mirza, I.H.;Naqvi, M.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.3 no.3
    • /
    • pp.161-164
    • /
    • 1990
  • Ninety six Rambouillet ${\times}$ Kaghani intact male lambs of 18 months of age were divided into 6 groups of 16 lambs each, groups being G-1, G-2, G-3, G-4, G-5 and G-6. Average liveweight of animals on different treatments at day 0 of the experiment was G-1 (24.68 S.D 3.35), G-2 (24.56 S.D 2.55), G-3 (24.53 S.D 2.90), G-4 (24.51 S.D 3.38), G-5 (24.58 S.D 3.58) and G-6 (24.81 S.D 3.43). Animals on treatment G-1 were fed only maize silage ad libitum, G-2 had been offered maize silage ad libitum plus 4.8 kg of commercial concentrate (Sona Vanda) per group, G-3 maize silage ad libitum plus 4.8 kg of crushed maize grain per group. G-4 lambs were fed oat silage ad libitum plus 4.8 kg of crushed maize per group, G-5 oat silage plus 4.8 kg of commercial concentrate per group and G-6 only oat silage ad libitum. The results showed highly significant differences (p<0.01) among treatment groups in silage intake throughout the feeding trial. G-2 group showed the highest silage intake while treatment G-4 showed the lowest silage intake for the first two months and treatment G-6 for the last two months. The results of growth rates (g/d/animal) showed that treatments G-1 and G-6, where no supplementation was given, had a weight loss throughout the feeding trial. However, weight loss in treatment G-6 was more severe than treatment G-1. Treatments G-2, G-3, G-4 and G-5 all showed weight gain however, treatment G-2 had the most gain. G-2 group also showed the highest wool production while G-6 the lowest. These results indicated that silage when made from full bloom crops of oats and silage fed alone without any supplementation causes weight loss in sheep. Supplementation with concentrates having 19% CP is far better than the crushed maize grain and maize silage is better than oats silage. Maize silage is superior than oat silage however, better performance could be expected if silages were made at the early bloom (dough) stage of plant maturity. The results indicate that treatment G-2 shows highest response while treatment G-6 the lowest. So the response of different treatments on both the parameters of weight gain and wool production is almost similar.

Evaluation of Biogas Production Performance and Dynamics of the Microbial Community in Different Straws

  • Li, Xue;Liu, Yan-Hua;Zhang, Xin;Ge, Chang-Ming;Piao, Ren-Zhe;Wang, Wei-Dong;Cui, Zong-Jun;Zhao, Hong-Yan
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.524-534
    • /
    • 2017
  • The development and utilization of crop straw biogas resources can effectively alleviate the shortage of energy, environmental pollution, and other issues. This study performed a continuous batch test at $35^{\circ}C$ to assess the methane production potential and volatile organic acid contents using the modified Gompertz equation. Illumina MiSeq platform sequencing, which is a sequencing method based on sequencing-by-synthesis, was used to compare the archaeal community diversity, and denaturing gradient gel electrophoresis (DGGE) was used to analyze the bacterial community diversity in rice straw, dry maize straw, silage maize straw, and tobacco straw. The results showed that cumulative gas production values for silage maize straw, rice straw, dry maize straw, and tobacco straw were 4,870, 4,032.5, 3,907.5, and $3,628.3ml/g{\cdot}VS$, respectively, after 24 days. Maximum daily gas production values of silage maize straw and rice straw were 1,025 and $904.17ml/g{\cdot}VS$, respectively, followed by tobacco straw and dry maize straw. The methane content of all four kinds of straws was > 60%, particularly that of silage maize straw, which peaked at 67.3%. Biogas production from the four kinds of straw was in the order silage maize straw > rice straw > dry maize straw > tobacco straw, and the values were 1,166.7, 1,048.4, 890, and $637.4ml/g{\cdot}VS$, respectively. The microbial community analysis showed that metabolism was mainly carried out by acetate-utilizing methanogens, and that Methanosarcina was the dominant archaeal genus in the four kinds of straw, and the DGGE bands belonged to the phyla Firmicutes, Bacteroidetes, and Chloroflexi. Silage maize is useful for biogas production because it contains four kinds of straw.

Effects on Performance of Sulla and/or Maize Silages Supplements for Grazing Dairy Cows

  • Chaves, Alexandre V.;Woodward, S.L.;Waghorn, G.C.;Brookes, I.M.;Burke, J.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.9
    • /
    • pp.1271-1282
    • /
    • 2006
  • The objective of this study was to investigate the effects of either maize or sulla silage supplementation to grazing dairy cows in summer. Forage mixtures used in the four week trial were based on previous experimental results but inclusion of rumen fistulated cows in five treatments enabled rumen sampling and use of in sacco incubations to determine the diet effects on digestion kinetics. Sulla and maize silages were used to supplement pasture and to meet minimum requirements for dietary protein concentration. Five groups of ten cows were grazed on a restricted daily allowance of 18 kg dry matter (DM) pasture/cow to simulate a summer pasture deficit, and four of these five groups received an additional 6 kg DM $cow^{-1}d^{-1}$ of silage (sulla, maize, or sulla and maize silages). A sixth group was given a relatively unrestricted (38 kg DM $cow^{-1}d^{-1}$) pasture allowance. The silage mixtures and pasture were incubated in sacco during the final week of the trial. The pasture was of high nutritive value and not typical of usual summer conditions, which favoured a response to quantity rather than quality of silage supplements. There was no difference in cow performance with the four silage supplements and the low milk solids (MS) production (about 1.0 kg $MS\;d^{-1}$) relative to full pasture (1.3 kg $MS\;d^{-1}$) showed the principal limitation to performance was dry matter intake. Milk composition was not affected by silage type and the low level of pasture substitution (0.29) suggested metabolizable energy (ME) was the principal limitation to performance. Samples of rumen liquor and in sacco data demonstrated significant effects of supplement; DM degradation rates (k) was highest ($0.084h^{-1}$) when cows were fed 6 kg sulla silage whereas diets with a high proportion of maize silage were slowly degraded (p<0.01).

Growth rate, carcass characteristics and meat quality of growing lambs fed buckwheat or maize silage

  • Keles, Gurhan;Kocaman, Veli;Ustundag, Ahmet Onder;Zungur, Asli;Ozdogan, Mursel
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.4
    • /
    • pp.522-528
    • /
    • 2018
  • Objective: This study evaluated inclusion of buckwheat silage to the diet of growing lambs in terms of meat quality as compared to maize silage. Methods: Buckwheat, rich in total phenols (TP, 33 g/kg dry matter [DM]), was harvested at the end of the milk stage and ensiled in 40 kg plastic bags after wilting (294 g/kg silage DM). A total of 18 growing lambs ($21.6{\pm}1.2$) were individually fed isonitrogenous and isoenergetic total mixed rations (TMR) for 75 d that either contained buckwheat or maize silage at DM proportions of 0.50. At the end of feeding trail all lambs were slaughtered to assess carcass characteristics and meat quality. Results: Buckwheat silage increased (p<0.01) the DM intake of lambs as compared to maize silage, but had no effects (p>0.05) on live weight gain and feed efficiency. Carcass weight, dressing percentage, meat pH, water holding capacity, cooking loss, shear force ($kg/cm^2$), and total viable bacteria count of meat did not differ (p>0.05) between the treatments. However, TP content of meat increased (p<0.001) by feeding buckwheat TMR. Feeding buckwheat TMR also decreased (p<0.05) the b* values of meat. Conclusion: The results provide that buckwheat silage is palatable and could successfully include TMR of growing lambs with no adverse effects on performance, carcass and meat quality. Additionally, feeding buckwheat silage to lambs offers increased TP in meat.

Effects of Hybrid and Maturity on Maize Stover Ruminal Degradability in Cattle Fed Different Diets

  • Arias, S.;Di Marco, O.N.;Aello, M.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.11
    • /
    • pp.1619-1624
    • /
    • 2003
  • The effect of maize hybrid (Suco and Dekalb 765, DK 765), maturity stage (milk, $R_3$ and 1/2 milk line, $R_5$) and animal diet (Diet 1: 70% lucerne hay+30% maize silage; Diet 2: 50% maize silage+20% sunflower meal+30% maize grain) on ruminal stover dry matter (DM) degradability was studied. Additionally, morphological and chemical plant composition was evaluated. Fodder samples ground at 2 mm were incubated in three Holstein steers (400 kg body weight) using the in situ technique. Ruminal degradation kinetics was studied and the effective degradability (ED) was estimated for an assumed kp of 5%/h. The in situ data was analyzed in a complete randomized block design with the animals as blocks. Significant interactions between hybrid${\times}$diet and maturity${\times}$diet on kinetic digestion parameters were detected. In Diet 1, hybrids did not differ in degradable fraction, kd or ED, although a minor difference (p<0.05) in the soluble fraction was found (25.5 and 23.2% for Suco and DK 765, respectively). In Diet 2, the DK 765 had greater degradable fraction (p<0.001) but smaller (p<0.01) kd than Suco, without differences in the soluble fraction or in ED. Anticipating the harvest increased ED of stover from 37.5% in $R_5$ to 44.6% in $R_3$ (average values across hybrids and diets) due to the increase (p<0.001) in the soluble fraction ($R_5$: 22.6%, $R_3$: 28.8%). It is concluded that hybrids had similar stover in situ DM degradability and that soluble fraction represent the main proportion of degradable substrates. Advancing the date of harvesting may not improve the in situ DM degradability of whole maize plant silage since the increase in stover quality is counteracted by the depression in the grain-to-stover ratio. The diet of the animal consuming silage might not improve stover utilization either.

THE USE OF NEAR INFRARED REFLECTANCE SPECTROSCOPY(NIRS) TO PREDICT CHEMICAL COMPOSITION ON MAIZE SILAGE

  • D.Cozzolino;Fassio, A.;Mieres, J.;Y.Acosta
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1610-1610
    • /
    • 2001
  • Microbiological examination of silage is of little value in gauging the outcome of silage, and so chemical analysis is more reliable and meaningful indicator of quality. On the other hand chemical assessments of the principal fermentation products provide an unequivocal basis on which to judge quality. Livestock require energy, protein, minerals and vitamins from their food. While fresh forages provide these essential items, conserved forages on the other hand may be deficient in one or more of them. The aim of the conservation process is to preserve as many of the original nutrients as possible, particularly energy and protein components (Woolford, 1984). Silage fermentation is important to preservation of forage with respect of feeding value and animal performance. Chemical and bacteriological changes in the silo during the fermentation process can affect adversely nutrient yield and quality (Moe and Carr, 1984). Many of the important chemical components of silage must be assayed in fresh or by extraction of the fresh material, since drying either by heat or lyophilisation, volatilises components such as acids or nitrogenous components, or effects conversion to other compounds (Abrams et al., 1987). Maize silage dorms the basis of winter rations for the vast majority of dairy and beef cattle production in Uruguay. Since nutrient intake, particularly energy, from forages is influenced by both voluntary dry matter intake and digestibility; there is a need for a rapid technique for predicting these parameters in farm advisory systems. Near Infrared Reflectance Spectroscopy (NIRS) is increasingly used as a rapid, accurate method of evaluating chemical constituents in cereals and dried forages. For many years NIRS was applied to assess chemical composition in dry materials (Norris et al., 1976, Flinn et al., 1992; Murray, 1993, De Boever et al., 1996, De la Roza et al., 1998). The objectives of this study were (1) to determine the potential of NIRS to assess the chemical composition of dried maize samples and (2) to attempt calibrations on undried samples either for farm advisory systems or for animal nutrition research purposes in Uruguay. NIRS were used to assess the chemical composition of whole - plant maize silage samples (Zea mays, L). A representative population of samples (n = 350) covering a wide distribution in chemical characteristics were used. Samples were scanned at 2 nm intervals over the wavelength range 400-2500 nm in a NIRS 6500 (NIRSystems, Silver Spring, MD, USA) in reflectance mode. Cross validation was used to avoid overfitting of the equations. The optimum calibrations were selected on the basis of minimizing the standard error of cross validation (SECV). The calibration statistics were R$^2$ 0. 86 (SECV: 11.4), 0.90 (SECV: 5.7), 0.90 (SECV: 16.9) for dry matter (DM), crude protein (CP), acid detergent fiber (ADF) in g kg$\^$-1/ on dry matter, respectively for maize silage samples. This work demonstrates the potential of NIRS to analyse whole - maize silage in a wide range of chemical characteristics for both advisory farm and nutritive evaluation.

  • PDF

Lactic Acid Bacteria in Total Mixed Ration Silage Containing Soybean Curd Residue: Their Isolation, Identification and Ability to Inhibit Aerobic Deterioration

  • Li, Y.;Wang, F.;Nishino, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.4
    • /
    • pp.516-522
    • /
    • 2016
  • We investigated the effects of the predominant lactic acid bacteria (LAB) on the fermentation characteristics and aerobic stability of total mixed ration (TMR) silage containing soybean curd residue (SC-TMR silage). The SC-TMR materials were ensiled in laboratory silos for 14 or 56 days. LAB predominant in SC-TMR silage were identified (Exp. 1). Lactobacillus fermentum (L. fermentum) and Streptococcus bovis (S. bovis) were found in the untreated materials, Leuconostoc pseudomesenteroides (L. pseudomesenteroides) in 14-day silage and Lactobacillus plantarum (L. plantarum) in all silages. Pediococcus acidilactici (P. acidilactici), Lactobacillus paracasei (L. paracasei), and Lactobacillus brevis (L. brevis) formed more than 90% of the isolates in 56- day silage. Italian ryegrass and whole crop maize were inoculated with P. acidilactici and L. brevis isolates and the fermentation and aerobic stability determined (Exp. 2). Inoculation with P. acidilactici and L. brevis alone or combined improved the fermentation products in ryegrass silage and markedly enhanced its aerobic stability. In maize silage, P. acidilactici and L. brevis inoculation caused no changes and suppressed deterioration when combined with increases in acetic acid content. The results indicate that P. acidilactici and L. brevis may produce a synergistic effect to inhibit SC-TMR silage deterioration. Further studies are needed to identify the inhibitory substances, which may be useful for developing potential antifungal agents.