DOI QR코드

DOI QR Code

Evaluation of Biogas Production Performance and Dynamics of the Microbial Community in Different Straws

  • Received : 2016.08.31
  • Accepted : 2016.10.28
  • Published : 2017.03.28

Abstract

The development and utilization of crop straw biogas resources can effectively alleviate the shortage of energy, environmental pollution, and other issues. This study performed a continuous batch test at $35^{\circ}C$ to assess the methane production potential and volatile organic acid contents using the modified Gompertz equation. Illumina MiSeq platform sequencing, which is a sequencing method based on sequencing-by-synthesis, was used to compare the archaeal community diversity, and denaturing gradient gel electrophoresis (DGGE) was used to analyze the bacterial community diversity in rice straw, dry maize straw, silage maize straw, and tobacco straw. The results showed that cumulative gas production values for silage maize straw, rice straw, dry maize straw, and tobacco straw were 4,870, 4,032.5, 3,907.5, and $3,628.3ml/g{\cdot}VS$, respectively, after 24 days. Maximum daily gas production values of silage maize straw and rice straw were 1,025 and $904.17ml/g{\cdot}VS$, respectively, followed by tobacco straw and dry maize straw. The methane content of all four kinds of straws was > 60%, particularly that of silage maize straw, which peaked at 67.3%. Biogas production from the four kinds of straw was in the order silage maize straw > rice straw > dry maize straw > tobacco straw, and the values were 1,166.7, 1,048.4, 890, and $637.4ml/g{\cdot}VS$, respectively. The microbial community analysis showed that metabolism was mainly carried out by acetate-utilizing methanogens, and that Methanosarcina was the dominant archaeal genus in the four kinds of straw, and the DGGE bands belonged to the phyla Firmicutes, Bacteroidetes, and Chloroflexi. Silage maize is useful for biogas production because it contains four kinds of straw.

Keywords

References

  1. Yuan X. 2011. Enhancing the anaerobic digestion of corn stalks using composite microbial pretreatment. J. Microbiol. Biotechnol. 21: 746-752. https://doi.org/10.4014/jmb.1011.11026
  2. Fu S-F, Wang F, Shi X-S, Guo R-B. 2016. Impacts of microaeration on the anaerobic digestion of corn straw and the microbial community structure. Chem. Eng. J. 287: 523-528. https://doi.org/10.1016/j.cej.2015.11.070
  3. Liew LN, Shi J, Li Y. 2012. Methane production from solidstate anaerobic digestion of lignocellulosic biomass. Biomass Bioenergy 46: 125-132. https://doi.org/10.1016/j.biombioe.2012.09.014
  4. Chandra R, Takeuchi H, Hasegawa T. 2012. Methane production from lignocellulosic agricultural crop wastes: a review in context to second generation of biofuel production. Renew. Sustain. Energy Rev. 16: 1462-1476. https://doi.org/10.1016/j.rser.2011.11.035
  5. Wang XJ, Yang GH, Feng YZ, Ren GX. 2011. Potential for biogas production from anaerobic co-digestion of dairy and chicken manure with corn stalks. Adv. Mater. Res. 347-353: 2484-2492. https://doi.org/10.4028/www.scientific.net/AMR.347-353.2484
  6. Lu Q, Yi J, Yang D. 2016. Comparative analysis of performance and microbial characteristics between high-solid and lowsolid anaerobic digestion of sewage sludge under mesophilic conditions. J. Microbiol. Biotechnol. 26: 110-119. https://doi.org/10.4014/jmb.1507.07098
  7. Song Z, Zhang C. 2015. Anaerobic codigestion of pretreated wheat straw with cattle manure and analysis of the microbial community. Bioresour. Technol. 186: 128-135. https://doi.org/10.1016/j.biortech.2015.03.028
  8. Wei S, Zhang H, Cai X, Xu J, Fang J, Liu H. 2014. Psychrophilic anaerobic co-digestion of highland barley straw with two animal manures at high altitude for enhancing biogas production. Energy Convers. Manag. 88: 40-48. https://doi.org/10.1016/j.enconman.2014.08.018
  9. Yan Z, Song Z, Li D, Yuan Y, Liu X, Zheng T. 2015. The effects of initial substrate concentration, C/N ratio, and temperature on solid-state anaerobic digestion from composting rice straw. Bioresour. Technol. 177: 266-273. https://doi.org/10.1016/j.biortech.2014.11.089
  10. Zhou S, Zhang Y, Dong Y. 2012. Pretreatment for biogas production by anaerobic fermentation of mixed corn stover and cow dung. Energy 46: 644-648. https://doi.org/10.1016/j.energy.2012.07.017
  11. Angelidaki I, Ellegaard L. 2003. Codigestion of manure and organic wastes in centralized biogas plants: status and future trends. Appl. Biochem. Biotechnol. 109: 95-105. https://doi.org/10.1385/ABAB:109:1-3:95
  12. Cuetos MJ, Fernandez C, Gomez X, Moran A. 2011. Anaerobic co-digestion of swine manure with energy crop residues. Biotechnol. Bioprocess Eng. 16: 1044-1052. https://doi.org/10.1007/s12257-011-0117-4
  13. Budzianowski WM. 2016. A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment. Renew. Sustain. Energy Rev. 54: 1148-1171. https://doi.org/10.1016/j.rser.2015.10.054
  14. Wang X, Yang G, Li F, Feng Y, Ren G. 2013. Response surface optimization of methane potentials in anaerobic codigestion of multiple substrates: dairy, chicken manure and wheat straw. Waste Manag. Res. 31: 60-66. https://doi.org/10.1177/0734242X12468197
  15. Cho SK, Im WT, Kim DH, Kim MH, Shin HS, Oh SE. 2013. Dry anaerobic digestion of food waste under mesophilic conditions: performance and methanogenic community analysis. Bioresour. Technol. 131: 210-217. https://doi.org/10.1016/j.biortech.2012.12.100
  16. Xu F, Li Y. 2012. Solid-state co-digestion of expired dog food and corn stover for methane production. Bioresour. Technol. 118: 219-226. https://doi.org/10.1016/j.biortech.2012.04.102
  17. Ren J, Yuan X, Li J, Ma X, Zhao Y, Zhu W, et al. 2014. Performance and microbial community dynamics in a twophase anaerobic co-digestion system using cassava dregs and pig manure. Bioresour. Technol. 155: 342-351. https://doi.org/10.1016/j.biortech.2013.12.120
  18. Qiao JT, Qiu YL, Yuan XZ, Shi XS, Xu XH, Guo RB. 2013. Molecular characterization of bacterial and archaeal communities in a full-scale anaerobic reactor treating corn straw. Bioresour. Technol. 143: 512-518. https://doi.org/10.1016/j.biortech.2013.06.014
  19. Zhang B, Zhao H, Yu H, Chen D, Li X, Wang W, et al. 2016. Evaluation of biogas production performance and archaeal microbial dynamics of corn straw during anaerobic codigestion with cattle manure liquid. J. Microbiol. Biotechnol. 26: 739-747. https://doi.org/10.4014/jmb.1509.09043
  20. Zheng Z, Liu J, Yuan X, Wang X, Zhu W, Yang F, Cui Z. 2015. Effect of dairy manure to switchgrass co-digestion ratio on methane production and the bacterial community in batch anaerobic digestion. Appl. Energy 151: 249-257. https://doi.org/10.1016/j.apenergy.2015.04.078
  21. Zhao H, Li J, Li J, Yuan X, Piao R, Zhu W, et al. 2013. Organic loading rate shock impact on operation and microbial communities in different anaerobic fixed-bed reactors. Bioresour. Technol. 140: 211-219. https://doi.org/10.1016/j.biortech.2013.04.027
  22. Li JJ, Zicari SM, Cui ZJ, Zhang RH. 2014. Processing anaerobic sludge for extended storage as anaerobic digester inoculum. Bioresour. Technol. 166: 201-210. https://doi.org/10.1016/j.biortech.2014.05.006
  23. Zhao H, Yu H, Yuan X, Piao R, Li H, Wang X, Cui Z. 2014. Degradation of lignocelluloses in rice straw by BMC-9, a composite microbial system. J. Microbiol. Biotechnol. 24: 585-591. https://doi.org/10.4014/jmb.1310.10089
  24. Li A, Chu Y, Wang X, Ren L, Yu J, Liu X, et al. 2013. A pyrosequencing-based metagenomic study of methaneproducing microbial community in solid-state biogas reactor. Biotechnol. Biofuels 6: 2-17. https://doi.org/10.1186/1754-6834-6-2
  25. Oberauner L, Zachow C, Lackner S, Hogenauer C, Smolle KH, Berg G. 2013. The ignored diversity: complex bacterial communities in intensive care units revealed by 16S pyrosequencing. Sci. Rep. 3: 1413. https://doi.org/10.1038/srep01413
  26. Muyzer G, de Waal EC, Uitterlinden AG. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700.
  27. Haruta S, Cui Z, Huang Z, Li M, Ishii M, Igarashi Y. 2002. Construction of a stable microbial community with high cellulose-degradation ability. Appl. Microbiol. Biotechnol. 59: 529-534. https://doi.org/10.1007/s00253-002-1026-4
  28. Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ. 1998. Multiple sequence alignment with Clustal X. Trends Biochem. Sci. 23: 403-405. https://doi.org/10.1016/S0968-0004(98)01285-7
  29. Yuan X, Wen B, Ma X, Zhu W, Wang X, Chen S, Cui Z. 2014. Enhancing the anaerobic digestion of lignocellulose of municipal solid waste using a microbial pretreatment method. Bioresour. Technol. 154: 1-9. https://doi.org/10.1016/j.biortech.2013.11.090
  30. Lissens G, Thomsen AB, De Baere L, Verstraete W, Ahring BK. 2004. Thermal wet oxidation improves anaerobic biodegradability of raw and digested biowaste. Environ. Sci. Technol. 38: 3418-3424. https://doi.org/10.1021/es035092h
  31. Ren H, Yao X, Li J, Li Z, Wang X, Wang C, et al. 2014. Effect of maize straw storage practice on biogas production performance during anaerobic co-digestion with cattle manure. Trans. Chin. Soc. Agric. Eng. 30: 213-222.
  32. Gao R, Yuan X, Li J, Li J, Ren J, Wang X, Cui Z. 2012. Acidification of four kinds of lignocelluloses materials in cow dung liquid. Trans. China Soc. Agric. Eng. 28: 199-204.
  33. Kashyap DR, Dadhich KS, Sharma SK. 2003. Biomethanation under psychrophilic conditions: a review. Bioresour. Technol. 87: 147-153. https://doi.org/10.1016/S0960-8524(02)00205-5
  34. Buyukkamaci N, Filibeli A. 2004. Volatile fatty acid formation in an anaerobic hybrid reactor. Process Biochem. 39: 1491-1494. https://doi.org/10.1016/S0032-9592(03)00295-4
  35. O'Sullivan CA, Burrell PC. 2007. The effect of media changes on the rate of cellulose solubilisation by rumen and digester derived microbial communities. Waste Manag. 27: 1808-1814. https://doi.org/10.1016/j.wasman.2006.10.010
  36. Kengo S, Masahiko M, Shin-Ichi H, Daisuke S, Naoya O, Yasuo I. 2010. Efficient degradation of rice straw in the reactors packed by carbon fiber textiles. Appl. Microbiol. Biotechnol. 87: 1579-1586. https://doi.org/10.1007/s00253-010-2667-3
  37. Heeg K, Pohl M, Sontag M, Mumme J, Klocke M, Nettmann E. 2014. Microbial communities involved in biogas production from wheat straw as the sole substrate within a two-phase solid-state anaerobic digestion. Syst. Appl. Microbiol. 37: 590-600. https://doi.org/10.1016/j.syapm.2014.10.002
  38. Munk B, Bauer C, Gronauer A, Lebuhn M. 2010. Population dynamics of methanogens during acidification of biogas fermenters fed with maize silage. Eng. Life Sci. 10: 496-508. https://doi.org/10.1002/elsc.201000056
  39. Wang Y, Sheng HF, He Y, Wu JY, Jiang YX, Tam NF, Zhou HW. 2012. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags. Appl. Environ. Microbiol. 78: 8264-8271. https://doi.org/10.1128/AEM.01821-12
  40. Liu C-L, Wang X-F, Wang X-J, Li P-P, Cui Z-J. 2010. The character of normal temperature straw-rotting microbial community. Agric. Sci. China 9: 713-720. https://doi.org/10.1016/S1671-2927(09)60147-4
  41. Zhao H, Li J, Liu J, Lu Y, Wang X, Cui Z. 2013. Microbial community dynamics during biogas slurry and cow manure compost. J. Integr. Agric. 12: 1087-1097. https://doi.org/10.1016/S2095-3119(13)60488-8
  42. Yuan X, Ma L, Wen B, Zhou D, Kuang M, Yang W, Cui Z. 2016. Enhancing anaerobic digestion of cotton stalk by pretreatment with a microbial consortium (MC1). Bioresour. Technol. 207: 293-301. https://doi.org/10.1016/j.biortech.2016.02.037
  43. Yu J, Zhao Y, Liu B, Zhao Y, Wu J, Yuan X, et al. 2016. Accelerated acidification by inoculation with a microbial consortia in a complex open environment. Bioresour. Technol. 216: 294-301. https://doi.org/10.1016/j.biortech.2016.05.093
  44. Lo Y-C, Saratale GD, Chen W-M, Bai M-D, Chang J-S. 2009. Isolation of cellulose-hydrolytic bacteria and applications of the cellulolytic enzymes for cellulosic biohydrogen production. Enzyme Microb. Technol. 44: 417-425. https://doi.org/10.1016/j.enzmictec.2009.03.002

Cited by

  1. Methane Production from Hydrogen Peroxide Assisted Hydrothermal Pretreatment of Solid Fraction Sugarcane Bagasse vol.11, pp.1, 2020, https://doi.org/10.1007/s12649-018-0452-1