• Title/Summary/Keyword: signalized intersections

Search Result 205, Processing Time 0.026 seconds

Preliminary Study on Actuated Signal Control at Rural Area of Cheon-an City (천안시 외곽지역의 감응식 신호운영을 위한 기초연구)

  • Park, Soon-Yong;Kim, Dong-Nyong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.3
    • /
    • pp.52-63
    • /
    • 2009
  • Recently in Korea, in the case of metropolis, the urban signalized intersections are controlled by traffic information center or ITS center. Cheon-an City also established traffic information center through the 1st.-$\sim$3rd. ITS public construction and has managed this center that includes bus information service, traffic information collection and providing service, parking information service, and traffic responsive control system. In the Cheon-an metropolitan traffic signal operation, traffic signal controllers were grouped by the each main traffic flow axes and performed with coordinated signal timing for the signalized arterials, and also cycle and split changed by realtime traffic demands. Cheon-an urban traffic responsive control system was evaluated by intersection delay and speed, then it was verified that the delay decreased and vehicle speed improved. However, the rural signal control system to connect adjacency town was evaluated to have lower status than urban area due to the unimproved TOD (Time of day) plan. Therefore actuated signal control was examined for substitutive control system in isolated signal intersection. The aim of this article is to compare actuated signal control with TOD mode in the rural intersection of Cheon-an and to fine superiority of these two control mode, with evaluation of vehicle delay by using HCM(2000) method and by micro-simulation CORSlM. The result of field test show that actuated signal control gave better performance in delay comparison than the existing TOD signal control. And simulation outcome verified that non-optimized TOD has higher delay than optimized TOD mode, non-optimal actuated mode, and optimal actuated signal control mode. Particularly, these three modes delays had not different values according to the paired sample t-test. This is because small traffic demands were loaded in each links. This suggested actuated signal control is expected to be more effective than TOD mode in some rural isolated intersections which frequently need to survey for traffic volume.

  • PDF

A Comparative Study On Accident Prediction Model Using Nonlinear Regression And Artificial Neural Network, Structural Equation for Rural 4-Legged Intersection (비선형 회귀분석, 인공신경망, 구조방정식을 이용한 지방부 4지 신호교차로 교통사고 예측모형 성능 비교 연구)

  • Oh, Ju Taek;Yun, Ilsoo;Hwang, Jeong Won;Han, Eum
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.3
    • /
    • pp.266-279
    • /
    • 2014
  • For the evaluation of roadway safety, diverse methods, including before-after studies, simple comparison using historic traffic accident data, methods based on experts' opinion or literature, have been applied. Especially, many research efforts have developed traffic accident prediction models in order to identify critical elements causing accidents and evaluate the level of safety. A traffic accident prediction model must secure predictability and transferability. By acquiring the predictability, the model can increase the accuracy in predicting the frequency of accidents qualitatively and quantitatively. By guaranteeing the transferability, the model can be used for other locations with acceptable accuracy. To this end, traffic accident prediction models using non-linear regression, artificial neural network, and structural equation were developed in this study. The predictability and transferability of three models were compared using a model development data set collected from 90 signalized intersections and a model validation data set from other 33 signalized intersections based on mean absolute deviation and mean squared prediction error. As a result of the comparison using the model development data set, the artificial neural network showed the highest predictability. However, the non-linear regression model was found out to be most appropriate in the comparison using the model validation data set. Conclusively, the artificial neural network has a strong ability in representing the relationship between the frequency of traffic accidents and traffic and road design elements. However, the predictability of the artificial neural network significantly decreased when the artificial neural network was applied to a new data which was not used in the model developing.

Development of a Traffic Accident Prediction Model and Determination of the Risk Level at Signalized Intersection (신호교차로에서의 사고예측모형개발 및 위험수준결정 연구)

  • 홍정열;도철웅
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.7
    • /
    • pp.155-166
    • /
    • 2002
  • Since 1990s. there has been an increasing number of traffic accidents at intersection. which requires more urgent measures to insure safety on intersection. This study set out to analyze the road conditions, traffic conditions and traffic operation conditions on signalized intersection. to identify the elements that would impose obstructions in safety, and to develop a traffic accident prediction model to evaluate the safety of an intersection using the cop relation between the elements and an accident. In addition, the focus was made on suggesting appropriate traffic safety policies by dealing with the danger elements in advance and on enhancing the safety on the intersection in developing a traffic accident prediction model fir a signalized intersection. The data for the study was collected at an intersection located in Wonju city from January to December 2001. It consisted of the number of accidents, the road conditions, the traffic conditions, and the traffic operation conditions at the intersection. The collected data was first statistically analyzed and then the results identified the elements that had close correlations with accidents. They included the area pattern, the use of land, the bus stopping activities, the parking and stopping activities on the road, the total volume, the turning volume, the number of lanes, the width of the road, the intersection area, the cycle, the sight distance, and the turning radius. These elements were used in the second correlation analysis. The significant level was 95% or higher in all of them. There were few correlations between independent variables. The variables that affected the accident rate were the number of lanes, the turning radius, the sight distance and the cycle, which were used to develop a traffic accident prediction model formula considering their distribution. The model formula was compared with a general linear regression model in accuracy. In addition, the statistics of domestic accidents were investigated to analyze the distribution of the accidents and to classify intersections according to the risk level. Finally, the results were applied to the Spearman-rank correlation coefficient to see if the model was appropriate. As a result, the coefficient of determination was highly significant with the value of 0.985 and the ranks among the intersections according to the risk level were appropriate too. The actual number of accidents and the predicted ones were compared in terms of the risk level and they were about the same in the risk level for 80% of the intersections.

Analysis of Speeding Characteristics Using Data from Red Light and Speed Enforcement Cameras (다기능단속카메라 수집 자료를 활용한 과속운전 특성 분석)

  • PARK, Jeong Soon;KIM, Joong Hyo;HYUN, Chul Seng;JOO, Doo Hwan
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.1
    • /
    • pp.29-42
    • /
    • 2016
  • Speeding is an important factor in traffic safety. Speed not only affects crash severity, but is also related to the possibility of crash occurrence. This study presents results from an analysis of 27,968 speed violation cases collected from 36 red light and speed enforcement cameras at signalized intersections in the city of Cheongju. Data included details of their violation history such as speeding tickets within a recent 3-year span and their demographic characteristics. The goal of this analysis is to understand the correlation between speed violations and various factors in terms of humans, vehicles and road environments. This study used descriptive statistics and Binary Logistics Regression(BLR) analysis with SPSS 20.0 software. The major results of this study are as follows. First, speed violations occurred at rural and suburban area. Second, about 25.6% of the violators committed to more than 20km/h over a speed limit. Third, the difference between speed violators and normal drivers clearly appeared in location of intersection(urban/rural/suburban area), gender and age. Finally, a statistically significant model(Hosmer and Lemeshow test: 11.586, p-value: 0.171) was developed through the BLR.

The Development of Operating Standards for the Adjustment of Pedestrian Green Phasing at a Signalized Intersection (신호교차로에서 보행자신호 전시간 운영기준 설정을 위한 연구)

  • Lee Choul-Ki;Lee Seok;Shim Dae-Young;Kim Gyun-Jo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.2 no.1 s.2
    • /
    • pp.41-52
    • /
    • 2003
  • The purpose of this study was to test the effects of the pedestrian green signal adjustment on clearance of the turning vehicles impeding the through traffic flow at the signalized intersections, and thereby, suggest some operational criteria for adjustment of the pedestrian green signal. In order to test such effects, the pedestrian green time was adjusted so that it could started a few seconds later than the vehicle green time during peak hours, and thereby, the turning vehicle volume not cleared at the intersection was measured by extending the time gap by 2 seconds. (In general, the pedestrian green signal turns on at the same time as the vehicle green signal.) The results of this test can be summed up as follows; first, the longer the time gap was, the turning vehicle volume not cleared from the intersection decreased more. Second, in case there existed a storage space between intersection and crosswalk the effect of the turning vehicles on the through traffic flows was minimal. Third, at the pelican, the effect of the turning vehicles on the through traffic flow was minimal due to the structure of the intersection and the phase sequence. In conclusion, it was found that the adjustment of pedestrian green signal had the effect of enhancing the intersection operation. When adjusting the pedestrian green signal, it was deemed necessary to thoroughly survey the geometric structure of the intersection and collect the data on the turning traffic volume and thereby, apply the results of analysis flexibly to each intersection.

  • PDF

Development of Homogeneous Road Section Determination and Outlier Filter Algorithm (국도의 동질구간 선정과 이상치 제거 방법에 관한 연구)

  • Do, Myung-Sik;Kim, Sung-Hyun;Bae, Hyun-Sook;Kim, Jong-Sik
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.7 s.78
    • /
    • pp.7-16
    • /
    • 2004
  • The homogeneous road section is defined as one consisted of similar traffic characteristics focused on demand and supply. The criteria, in the aspect of demand, are the diverging rate and the ratio of green time to cycle time at signalized intersection, and distance between the signalized intersections. The criteria, in that or supply, are the traffic patterns such as traffic volume and its speed. In this study, the effective method to generate valuable data, pointing out the problems of removal method of obscure data, is proposed using data collected from Gonjiam IC to Jangji IC on the national highway No.3. Travel times are collected with licence matching method and traffic volume and speed are collected from detectors. Futhermore, the method of selecting homogeneous road section is proposed considering demand and supply aspect simultaneously. This method using outlier filtering algorithm can be applied to generate the travel time forecasting model and to revise the obscured of missing data transmitting from detectors. The point and link data collected at the same time on the rational highway can be used as a basis predicting the travel time and revising the obscured data in the future.

A New Proposal of Pedestrian Signal Time (보행자 신호체계에 대한 새로운 제안)

  • 박용진;박종규;손한철;김종태
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.3
    • /
    • pp.7-18
    • /
    • 2001
  • The pedestrian signal systems operating presently could provide more time for the pedestrian to cross the street than the previous system, but it would increase the cycle length and cause longer delays at the signalized intersections. For instance, more than 80% of traffic signals would have to have the cycle length increased by 10sec in Daegu Metropolitan areas. Therefore. the purpose of this study is to propose a pedestrian traffic signal time that not only maintains the safety of the pedestrian but also reduces the traffic cycle length. The proposed pedestrian signal time is set to enable enough time for the elderly to cross and the flashing time is set low enough to deter the ordinary person. This new pedestrian signal time can reduce the traffic cycle length at intersections and prevent the Pedestrian crossing during flashing time. In addition to the flashing green should be changed to flashing red to warn the pedestrian he should not begin crossing as opposed to the flashing green which suggest he could cross. In this study, the speed of 1.1m/sec and 0.85m/sec are applied to the new proposed signal time for normal and elderly person respectively after analyzing data collected at Daegu Metropolitan area.

  • PDF

Development of Evaluation Model for Black Spot Improvement Priorities by using Emperical Bayes Method (EB기법을 이용한 사고잦은 곳 개선사업 우선순위 판정기법 개발)

  • Jeong, Seong-Bong;Hwang, Bo-Hui;Seong, Nak-Mun;Lee, Seon-Ha
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.3
    • /
    • pp.81-90
    • /
    • 2009
  • The safety management of a road network comprises four basic inter-related components:identification of sites(black spot) requiring safety investigation, diagnosis of safety problems, selection of feasible treatments for potential treatment candidates, and prioritization of treatments given limited budgets(Persaud, 2001). Identification process of selecting black spot is very important for efficient investigation of sites. In this study, the accident prediction model for EB method was developed by using accident data and geometric conditions of black spots selected from four-leg signalized intersections in In-cheon City for three years (2004-2006). In addition, by comparing the rank nomination technique using EB method to that by using accident counts, we managed to show the problems which the existing method have and the necessity for developing rational prediction model. As a result, in terms of total number of accidents, both the counts predicted by existing non-linear regression model and that by EB method have high good of fitness, but EB method, considering both the accident counts by sites and total number of accident, has better good of fitness than non-linear poison model. According to the result of the comparison of ranks nominated for treatment between two methods, the rank for treatment of almost sites does not change but SeoHae intersection and a few other intersections have significant changes in their rank. This shows that, with the technique proposed in the study, the RTM problem caused by using real accident counts can be overcome.

A Shortest Path Algorithm Considering Directional Delays at Signalized Intersection (신호교차로에서 방향별 지체를 고려한 최적경로탐색 연구)

  • Min, Keun-Hong;Jo, Mi-Jeong;Kho, Seung-Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.3
    • /
    • pp.12-19
    • /
    • 2010
  • In road network, especially in urban area, inefficiency of travel time is caused by signal control and turn maneuver at intersection and this inefficiency has substantial effects on travel time. When searching for the shortest path, this inefficiency which is caused by turn maneuver must be considered. Therefore, travel time, vehicle volume and delay for each link were calculated by using simulation package, PARAMICS V5.2 for adaptation of turn penalty at 16 intersections of Gangnam-gu. Turn penalty was calculated respectively for each intersection. Within the same intersection, turn penalty differs by each approaching road and turn direction so the delay was calculated for each approaching road and turn direction. Shortest path dealing with 16 intersections searched by Dijkstra algorithm using travel time as cost, considering random turn penalty, and algorithm considering calculated turn penalty was compared and analyzed. The result shows that by considering turn penalty searching the shortest path can decrease the travel time can be decreased. Also, searching the shortest path which considers turn penalty can represent reality appropriately and the shortest path considering turn penalty can be utilized as an alternative.

Study of Effectiveness of Signal Preemption Strategy Depending on Train Speed at Intersections Near Highway-Railroad Grade Crossings (철도건널목 인근 신호교차로에서의 우선신호 전략 비교분석(열차속도를 중심으로))

  • Jo, Han-Seon;Kim, Won-Ho;O, Ju-Taek;Sim, Jae-Ik
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.2 s.95
    • /
    • pp.17-26
    • /
    • 2007
  • Because the prime objective of the current preemption methods at signalized intersections near highway-railroad grade crossings(IHRGCs) is to clear the crossing, secondary objectives such as safe pedestrian crossing time and minimized delay often are given less consideration or are ignored completely during the preemption. Under certain circumstances state-of-the-practice traffic signal preemption strategies may cause serious pedestrian safety and efficiency problems at IHRGCs. An improved transition preemption strategy(ITPS) that is specifically designed to improve intersection performance while maintaining or improving the current level of safety was developed by Cho and Rilett. Even if the new transition preemption strategy improved both the safety and efficiency of IHRGCs, the performance of the strategy is affected by train speed. Understanding the impact of this factor is essential in order to implement ITPS. In this paper, the effects of train speed were analyzed using a VISSIM simulation model which was calibrated to field conditions. It was concluded that the delay is affected more by train speed than the transitional preemption strategy and the safety of the intersection is not affected by train speed once an advanced preemption warning time(APWT) is equal to or greater than 90 seconds.