• Title/Summary/Keyword: signal subspace

Search Result 114, Processing Time 0.021 seconds

An ICA-Based Subspace Scanning Algorithm to Enhance Spatial Resolution of EEG/MEG Source Localization (뇌파/뇌자도 전류원 국지화의 공간분해능 향상을 위한 독립성분분석 기반의 부분공간 탐색 알고리즘)

  • Jung, Young-Jin;Kwon, Ki-Woon;Im, Chang-Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.6
    • /
    • pp.456-463
    • /
    • 2010
  • In the present study, we proposed a new subspace scanning algorithm to enhance the spatial resolution of electroencephalography (EEG) and magnetoencephalography(MEG) source localization. Subspace scanning algorithms, represented by the multiple signal classification (MUSIC) algorithm and the first principal vector (FINE) algorithm, have been widely used to localize asynchronous multiple dipolar sources in human cerebral cortex. The conventional MUSIC algorithm used principal component analysis (PCA) to extract the noise vector subspace, thereby having difficulty in discriminating two or more closely-spaced cortical sources. The FINE algorithm addressed the problem by using only a part of the noise vector subspace, but there was no golden rule to determine the number of noise vectors. In the present work, we estimated a non-orthogonal signal vector set using independent component analysis (ICA) instead of using PCA and performed the source scanning process in the signal vector subspace, not in the noise vector subspace. Realistic 2D and 3D computer simulations, which compared the spatial resolutions of various algorithms under different noise levels, showed that the proposed ICA-MUSIC algorithm has the highest spatial resolution, suggesting that it can be a useful tool for practical EEG/MEG source localization.

Correlation Matrix Generation Technique with High Robustness for Subspace-based DoA Estimation (부공간 기반 도래각 추정을 위한 높은 강건성을 지닌 상관행렬 생성 기법)

  • Byeon, BuKeun
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.3
    • /
    • pp.166-171
    • /
    • 2022
  • In this paper, we propose an algorithm to improve DoA(direction of arrival) estimation performance of the subspace-based method by generating high robustness correlation matrix of the signals incident on the uniformly linear array antenna. The existing subspace-based DoA estimation method estimates the DoA by obtaining a correlation matrix and dividing it into a signal subspace and a noise subspace. However, the component of the correlation matrix obtained from the low SNR and small number of snapshots inaccurately estimates the signal subspace due to the noise component of the antenna, thereby degrading the DoA estimation performance. Therefore a robust correlation matrix is generated by arranging virtual signal vectors obtained from the existing correlation matrix in a sliding manner. As a result of simulation using MUSIC and ESPRIT, which are representative subspace-based methods,, the computational complexity increased by less than 2.5% compared to the existing correlation matrix, but both MUSIC and ESPRIT based on RMSE 1° showed superior DoA estimation performance with an SNR of 3dB or more.

Image quality enhancement using signal subspace method (신호 부공간 기법을 이용한 영상화질 향상)

  • Lee, Ki-Seung;Doh, Won;Youn, Dae-Hee
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.11
    • /
    • pp.72-82
    • /
    • 1996
  • In this paper, newly developed algorithm for enhancing images corrupted by white gaussian noise is proposed. In the method proposed here, image is subdivided into a number of subblocks, and each block is separated into cimponents corresponding to signal and noise subspaces, respectively through the signal subspace method. A clean signal is then estimated form the signal subspace by the adaptive wiener filtering. The decomposition of noisy signal into noise and signal subspaces in is implemented by eigendecomposition of covariance matrix for noisy image, and by performing blockwise KLT (karhunen loeve transformation) using eigenvector. To reduce the perceptual noise level and distortion, wiener filtering is implementd by adaptively adjusting noise level according to activity characteristics of given block. Simulation results show the effectiveness of proposed method. In particular, edge bluring effects are reduced compared to the previous methods.

  • PDF

Subspace Speech Enhancement Using Subband Whitening Filter (서브밴드 백색화 필터를 이용한 부공간 잡음 제거)

  • 김종욱;유창동
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.169-174
    • /
    • 2003
  • A novel subspace speech enhancement using subband whitening filter is proposed. Previous subspace speech enhancement method either assumes additive white noise or uses whitening filter as a pre-processing for colored noise. The proposed method tries to minimize the signal distortion while reducing residual noise by processing the signal using subband whitening filter. By incorporating the notion of subband whitening filter, spectral resolution in Karhunen-Loeve(KL) domain is improved with the negligible additional computational load. The proposed method outperforms both the subspace method suggested by Ephraim and the spectral subtraction suggested by Boll in terms of segmental signal-to-noise ratio (SNRseg) and perceptual evaluation of speech quality (PESQ).

On Construction of Anti-jam and Multipath Mitigation GNSS receiver by Subspace Projection (Subspace Projection을 이용한 전파방해신호 제거와 다중경로 간섭신호 제거 GNSS 수신기 설계)

  • Shin, Jeong-Hwan;Heo, Jun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.12 s.354
    • /
    • pp.24-30
    • /
    • 2006
  • This paper considers interference suppression and multipath mitigation in Global Navigation Satellite Systems (GNSSs). We propose an anti-jam GNSS receiver which suppresses interference and multipath by subspace projection method. The resulting interference suppressed and multipath mitigated signal is then process by a beamformer, whose weight vector maximizes the signal-to-noise ratio of the output signal. The enhanced performance is shown by refined cross correlation and beam pattern.

Efficient DOA Estimation of Coherent Signals Using ESPRIT (ESPRIT을 이용한 효율적인 코히런트 신호의 도래각 추정)

  • Choi, Yang-Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.164-171
    • /
    • 2012
  • ESPRIT(Estimation of Signal Parameter via Rotational Invariance Techniques) estimates DOAs(directions of arrival) of the incident signals on a sensor array by exploiting the shift invariance between its two subarrays. This paper suggests an efficient DOA estimation method based on ESPRIT when coherent signals impinge on the sensor array. When applying ESPRIT, it is necessary to find a signal subspace. Though the widely known SS(spatial smoothing) method allows us to obtain a signal subspace in the presence of coherent signals, its computational complexity is very high. Recently a CV(correlation vector) based method has been presented which is computationally simple. However, the number of resolvable signals in the method is smaller than that in the SS based method when multiple coherent signal groups are present. The proposed method in this paper, which obtains a signal subspace by utilizing only part of the correlation matrix, significantly reduces the computational complexity as compared with the SS based one, while the former is resolving the same number of coherent signals as the latter,

Mutiple Target Angle Tracking Algorithm Based on measurement Fusion (측정치 융합에 기반을 둔 다중표적 방위각 추적 알고리즘)

  • Ryu, Chang-Soo
    • 전자공학회논문지 IE
    • /
    • v.43 no.3
    • /
    • pp.13-21
    • /
    • 2006
  • Ryu et al. proposed a multiple target angle tracking algorithm using the angular measurement obtained from the signal subspace estimated by the output of sensor array. Ryu's algorithm has good features that it has no data association problem and simple structure. But its performance is seriously degraded in the low signal-to-noise ratio, and it uses the angular measurement obtained from the signal subspace of sampling time, even though the signal subspace is continuously updated by the output of sensor array. For improving the tracking performance of Ryu's algorithm, a measurement fusion method is derived based on ML(Maximum Likelihood) in this paper, and it admits us to use the angular measurements obtained form the adjacent signal subspaces as well as the signal subspace of sampling time. The new target angle tracking algorithm is proposed using the derived measurement fusion method. The proposed algorithm has a better tracking performance than that of Ryu's algorithm and it sustains the good features of Ryu's algorithm.

A Study on an Improved MVE for Estimating the Direction of Arrival of Multiple Sources (다중 신호원의 도래방향 추정을 위한 개선된 MVE에 관한 연구)

  • 정용민;신준호;김용득
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.687-690
    • /
    • 1999
  • Many high-resolution algorithms based on the eigen-decomposition analysis of observed covariance matrix, such as MVE, MUSIC, and EVM, have been proposed. However, the resolution of spectral estimates for these algorithms is severely degraded when Signal-to-Noise Ratio (SNR) is low and arrival angles of signal are close to each other. And EVM and MUSIC is powerful for the characteristic of SNR. But have the limitation that the number of signals presented is known. While MVE is bad the characteristic of SNR. In this study, we propose a modified MVE to enhance the resolution for Direction-Of-Arrival (DOA) estimation of underwater acoustic signal. This is to remove the limitation that existing algorithms should know the information for the number of signals. Because the algorithms founded on the eigen value estimate DOA with only the noise subspace, they have the high-resolution characteristic. And then, with the method reducing the effect of the signal subspace, we are to reduce the degradation because of complementary relationship between the signal subspace and the noise subspace. This paper, with using the simulation data, we have estimated the proposed algorithms, compared it with other high-resolution algorithms. The simulation results show that the modified MVE proposed is accurate and has a better resolution even though SNR is low, under the same condition.

  • PDF

Interference Suppression Using Principal Subspace Modification in Multichannel Wiener Filter and Its Application to Speech Recognition

  • Kim, Gi-Bak
    • ETRI Journal
    • /
    • v.32 no.6
    • /
    • pp.921-931
    • /
    • 2010
  • It has been shown that the principal subspace-based multichannel Wiener filter (MWF) provides better performance than the conventional MWF for suppressing interference in the case of a single target source. It can efficiently estimate the target speech component in the principal subspace which estimates the acoustic transfer function up to a scaling factor. However, as the input signal-to-interference ratio (SIR) becomes lower, larger errors are incurred in the estimation of the acoustic transfer function by the principal subspace method, degrading the performance in interference suppression. In order to alleviate this problem, a principal subspace modification method was proposed in previous work. The principal subspace modification reduces the estimation error of the acoustic transfer function vector at low SIRs. In this work, a frequency-band dependent interpolation technique is further employed for the principal subspace modification. The speech recognition test is also conducted using the Sphinx-4 system and demonstrates the practical usefulness of the proposed method as a front processing for the speech recognizer in a distant-talking and interferer-present environment.

Orthonormalized Forward Backward PAST (Projection Approximation Subspace Tracking) Algorithm (직교설 전후방 PAST (Projection Approximation Subspace Tracking) 알고리즘)

  • Lim, Jun-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.6
    • /
    • pp.514-519
    • /
    • 2009
  • The projection approximation subspace tracking (PAST) is one of the attractive subspace tracking algorithms, because it estimates the signal subspace adaptively and continuously. Furthermore, the computational complexity is relatively low. However, the algorithm still has room for improvement in the subspace estimation accuracy. FE-PAST (Forward-Backward PAST) is one of the results from the improvement studies. In this paper, we propose a new algorithm to improve the orthogonality of the FB-PAST (Forward-Backward PAST).