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It has been shown that the principal subspace-based 
multichannel Wiener filter (MWF) provides better 
performance than the conventional MWF for suppressing 
interference in the case of a single target source. It can 
efficiently estimate the target speech component in the 
principal subspace which estimates the acoustic transfer 
function up to a scaling factor. However, as the input 
signal-to-interference ratio (SIR) becomes lower, larger 
errors are incurred in the estimation of the acoustic 
transfer function by the principal subspace method, 
degrading the performance in interference suppression. In 
order to alleviate this problem, a principal subspace 
modification method was proposed in previous work. The 
principal subspace modification reduces the estimation 
error of the acoustic transfer function vector at low SIRs. 
In this work, a frequency-band dependent interpolation 
technique is further employed for the principal subspace 
modification. The speech recognition test is also conducted 
using the Sphinx-4 system and demonstrates the practical 
usefulness of the proposed method as a front processing for 
the speech recognizer in a distant-talking and interferer-
present environment. 
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I. Introduction 

When the target signal and interfering noise arrive at multiple 
microphones from different directions, the interferer can be 
suppressed by beamforming or multichannel filtering 
techniques based on the spatial diversity. Fixed beamformers 
have data-independent filter coefficients and usually provide 
distortionless response to the direction of the target signal while 
suppressing the power of interference coming from other 
directions. The residual noise in the output of the fixed 
beamformer can be further suppressed by an adaptive 
beamformer, for example, generalized sidelobe canceller, or 
single-channel postfiltering followed by the beamformer [1]. 

Multichannel Wiener filters (MWFs) have been shown to 
provide better performance than the beamforming techniques 
since they are less sensitive to the direction of arrival (DOA) 
estimation error and deviations from the assumed microphone 
characteristics, for example, gain, phase, and position [2]-[4]. 
For more efficient interference suppression with the MWF, a 
subspace-based approach has also been developed which 
removes noise subspace and estimates the target speech 
component from the remaining signal subspace [3], [5], [6]. If 
the subspace decomposition is performed in the frequency 
domain, the principal subspace vector estimates the acoustic 
transfer function vector up to a scaling factor, and better 
performance can be obtained by the principal subspace-based 
MWF [5]. 

However, as the input signal-to-interference ratio (SIR) 
becomes lower, the principal subspace vector deviates from the 
acoustic transfer function vector, which decreases the 
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performance of interference suppression. In  Fig. 2, the deviation 
of the principal subspace vector from the acoustic transfer 
function will be illustrated in terms of the angle between two 
vectors (the principal subspace vector and the acoustic transfer 
function vector). In previous work, a principal subspace vector 
modification was proposed using the steering vector of the 
target speech signal for better performance at low SIRs [7]. The 
principal subspace vector was replaced by the linear 
interpolation of the original subspace vector and the steering 
vector of the target speech signal. The modified principal 
subspace estimates the acoustic transfer function more 
accurately and yields better performance in terms of SIR gain 
and mel-frequency cepstral coefficient (MFCC) distortion. In 
this paper, further improvements were provided by employing 
a frequency-band dependent interpolation for the principal 
subspace modification. The automatic speech recognition test 
was also conducted to support the effectiveness and the 
potential of the proposed method as a front processing for a 
distant-talking speech recognition system in the presence of a 
strong interferer. 

The rest of this paper is organized as follows. Section II 
reviews the principal subspace-based MWF. Section III 
proposes the principal subspace modification method 
employed by a frequency-band dependent/independent 
interpolation. Section IV presents the simulation results with 
three different interferer scenarios evaluated in terms of SIR 
gain, MFCC distortion, and word error rate (WER) in 
automatic speech recognition. 

II. Principal Subspace-Based MWF 

If a single target signal S( f ) arrives at M microphones with 
M-dimensional acoustic transfer function H( f ) from the source 
to the microphones and is corrupted by additive interfering 
noise, the multichannel signal model in the frequency domain 
is given by 
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where Y( f ), X( f ), and N( f ) are the M-dimensional signals 
which denote the observed signal, target component, and 
additive noise (interferer) component, respectively. The filtered 
output Z( f ) can be written as 

( ) ( ) ( ),HZ f f f= W Y               (2) 

with a multichannel interference suppression filter W(f). 

Hereafter the frequency index (f) is omitted for the sake of 
brevity. If we assume that the target speech and interference are 
uncorrelated and estimate the target speech component in the 
first microphone signal in the minimum mean square error 
(MMSE) sense, the frequency domain MWF is given by [3], 
[5] as 

1
1( ) ,− −Y Y NW R R R e               (3) 

where RY=E{YYH}, RN= E{NNH}, and e1=[1 0 … 0]T. In the 
conventional MWF, the interfering noise correlation matrix RN is 
recursively estimated with a forgetting factor during interference-
only periods and kept fixed during target-present periods with the 
help of a target signal detector while the noisy speech correlation 
matrix RY is updated during all the periods as  
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where Nα  and Yα  are smoothing constants. 
By incorporating the subspace decomposition in the 

frequency domain, the spatial subspaces can be taken into 
consideration [5], [6]. The subspace decomposition can be 
performed by the joint diagonalization [8] of RY and RN as 

,
,
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where YΛ  and NΛ  are diagonal matrices as 

,1 ,2 ,diag{ },Y Y Y Mλ λ λ=YΛ           (7) 

,1 ,2 ,diag{ },N N N Mλ λ λ=NΛ          (8) 

and Q is an invertible, but not necessarily orthogonal matrix. 
The correlation matrices can be expressed by the subspace 
matrix Q  as 

,
,
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where H−=Q Q . By substituting (9) into (3), the frequency 
domain MWF is obtained as 

1
1( ) H−= − Y NW Q I Λ Λ Q e .          (10) 

When each of the frequency domain multichannel target 
speech components is the multiplication of the corresponding 
acoustic transfer function and the single target speech source as 
shown in (1), the correlation matrix of the target speech 
component can be written as 

*{ } { } ,H HE E SS= =XR XX HH         (11) 
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where the rank of RX is equal to 1. From (9) and the rank-1 
property of RX, the estimate of the target speech correlation 
matrix is given by 

,1 ,1 1 1
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            (12) 

where the M-dimensional principal subspace vector 1q  is the 
first column vector of Q . From (11) and (12), we note that 

1q  is the estimate of the acoustic transfer function vector H up 
to a scaling factor [5]. In summary, if we replace Q  with 
[ ]1q 0 0  in (9) and (10), the principal subspace-based 
MWF can be expressed as 
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III. Principal Subspace Modification 

The target speech and interference are assumed to be 
uncorrelated for obtaining the estimate of RX in (12). In 
practical situations, this assumption is valid at rather high SIRs 
where the absolute value of the cross correlation |E{XiNj

*}| is 
much smaller than |E{XiXj

*}|. However, in the case of low SIRs, 
the cross correlation cannot be ignored any more, and a large 
error occurs in the estimate of RX. Consequently, 1q  deviates 
from H (see Fig. 2), and the performance of the principal 
subspace-based MWF is degraded. 

To obtain better performance with the principal subspace-
based MWF at low SIRs, a principal subspace modification 
method was proposed using the information on the direction of 
the target signal (specifically the steering vector) [7]. We extend 
previous work to include a subspace modification with 
frequency-band dependent coefficients and evaluations of 
noise-corrupted speech by an automatic speech recognizer to 
show the usefulness of the proposed algorithm as a front 
processing for the automatic speech recognizer in a distant-
talking with interfering noise. We further test the robustness of 
the proposed algorithm in the presence of DOA error. 

Though the best way to correct the principal subspace is to 
replace it with the acoustic transfer function vector H, the 
measurement of H should be done in noise-free condition, 
which is not often practical. Instead, in this paper, we use the 
steering vector of a target signal to modify the principal 
subspace. The steering vector can be easily obtained by 
assuming knowledge of the direction of target signal (typically 
in a hands-free communication system designed for personal 
use, for example, PDA, telematics, and smartphone) or 

estimating the direction by any wideband DOA estimation 
method [1]. In a far-field, the steering vector is equivalent to the 
multichannel acoustic transfer function in an ideal case when 
there is no microphone mismatch and the reverberation time is 
0 ms. However, the error between the steering vector and the 
multichannel transfer function gets larger as the reverberation 
time increases even if there is no microphone mismatch. 
Therefore, we assume a moderately reverberant environment 
(reverberation time ≤ 300 ms). The steering vector of the target 
signal is denoted as 

2
s [1 ] ,Mj j Te e= φ φv             (15) 

where iφ  represents the phase of the i-th microphone signal 
with respect to the first microphone. The phases can be 
obtained from the direction (angle) of the target signal with 
respect to the microphones, signal frequency, and the 
configuration of microphone array [9]. 

Considering the steering vector as a reference for the 
acoustic transfer function vector, we modify the principal 
subspace toward the reference according to the amount of the 
deviation between the principal subspace vector 1q  and the 
steering vector vs. First, the angle between 1q  and vs is 
calculated to measure the closeness of the two vectors. The 
angle between two vectors v1 and v2 is a measure for closeness 
and can be defined as 
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where ||·|| denotes the vector norm, and the range of the angle is 
[0, π/2]. Before calculating the angle between 1q  and vs, each 
element of 1q  is divided by its absolute value as 
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where 1 1 2[ ]T
Mq q q=q . By calculating the angle between 

1q  and vs instead of the angle between 1q  and vs, we 
alleviate the error caused by the microphone gain mismatch. 
We adopt a simple way to modify the principal subspace using 
linear interpolation between 1q  and vs as 
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When the principal subspace is close to the steering vector,  
the principal subspace is barely modified since α is close to 0. 
On the contrary, the principal subspace with a large angle 
against the steering vector is modified toward the steering 
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vector. After the interpolation, each element of 1′q  is 
multiplied by each absolute value of the element of 1q  as 

1 1 1 ,i′ ′=q q q                  (20) 

where i denotes the elementwise product. After the 
modification of the principal subspace vector, the MWF is 
calculated by replacing the original principal subspace vector 

1q  with 1′q  in (13) and (14). 
In (19), the two vectors, 1q  and vs are functions of 

frequency, and the angle between the two vectors is also a 
function of frequency, accordingly. For example, when 
considering two steering vectors for two different directions in 
a microphone array, the angles between the two steering 
vectors are proportional to the input frequency. Note that the 
angles between the two vectors in (19) tend to be larger at high 
frequencies compared to angles at low frequencies (see Fig. 2). 
We now propose a frequency-band dependent interpolation in 
(18) to consider the frequency dependent angle between the 
two vectors as  

1
2

s 1

s 1

2

s 1

( , )
, 1 kHz,

/ 2

( , )
, 1 kHz 4 kHz,

/ 2

( , )
, 4 kHz.

/ 2

f

f

f

⎧
⎛ ⎞∠⎪ <⎜ ⎟⎪⎜ ⎟
⎝ ⎠⎪

⎪∠⎪= ≤ <⎨
⎪
⎪⎛ ⎞∠⎪ ≥⎜ ⎟⎜ ⎟⎪⎝ ⎠⎪⎩

π

α
π

π

v q

v q

v q

     (21) 

As proposed in (21), at a low frequency-band, the 
interpolation coefficient α is boosted by applying square-root 
function. On the contrary, α2 is used as an interpolation 
coefficient to reduce the effect of the angle between 1q  and vs 
at high frequency-band (f ≥ 4 kHz). 

IV. Simulation Results 

1. Simulation Data  

In this simulation, we tested the algorithm in the presence of 
competing speech. For the competing speech interference, we 
prepared two news clips recorded at a 16 kHz sampling rate for 
16 seconds. For the target signal, we used connected digits 
taken from the TIDIGITS database. 

The TIDIGITS is a well-known database containing spoken 
digits from 0 through 9, with a single utterance including a 
sequence of digits [10]. The audio files in the TIDIGITS have a 
sampling rate of 20 kHz and were resampled to 16 kHz. From 
the competing speech recording, randomly cut segments were 
used for corrupting different target signals.  

 

Fig. 1. Simulation environment: target source and interfering 
signals arriving at a linear microphone array. 
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The multichannel signals were created by the convolution 
of a sound source with acoustic impulse responses. The 
impulse responses were obtained from the RWCP Sound 
Scene Database, measured 2 m away from the center of the 
microphone array in real environments. The reverberation 
time was around 300 ms [11]. The microphone array is a 
linear type and has 7 microphones with 5.66 cm uniform 
intervals. Multichannel target signals were created by 
convolving the target signals (utterances of connected digits) 
with the impulse response measured in front of the 
microphone array. In the same way, the multichannel 
interfering noise signals were prepared coming at the angle of 
40° and 80° to the direction of the target speech (see Fig. 1). 
Three different interference scenarios were tested: 1) “Angle 
40”: single competing speech interference coming at the 
angle of 40°; 2) “Angle 80”: single competing speech 
interference coming at the angle of 80°; and 3) “Angle 
40+Angle 80”: two different competing speech interferences 
coming simultaneously at the angle of 40° and 80°, 
respectively. The multichannel interfering noise corrupted the 
target signal at a wide range of SIR (power ratio of signal-to-
interfering noise in the time domain) levels ranging from –5 
dB to 30 dB in steps of 5 dB. In this simulation, the direction 
of the target signal was assumed to be known. 

The interference suppression procedure for the test data is as 
follows. The multichannel noisy signal was first segmented 
into 32 ms (512 samples for 16 kHz sampling) frames with 
50% overlap between adjacent frames. Each frame was 
multiplied by Hann window and applied with 512 point fast 
Fourier transform (FFT). To reconstruct the time-domain signal, 
an inverse FFT was applied to the filtered frequency-domain 
signal, and the overlap-and-add technique was subsequently 
used. 
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2. Speech Recognition Test 

The proposed algorithm was evaluated using the Sphinx-4 
automatic speech recognizer [12]. For the recognition test, we 
used the TIDIGITS models included as part of the distribution 
of Sphinx-4. The acoustic model uses continuous density three-
state HMMs with 8 Gaussian components per state. The 
cepstral analysis was done yielding 13 MFCCs including log 
energy as feature vectors. In addition, delta-MFCCs and delta-
delta-MFCCs were used to obtain a 39-dimensional feature 
vector for each frame. Five hundred audio files were taken 
from 50 speakers (25 men and 25 women) for the test database, 
which were not included in the training of the model. For the 
selection of the test audio files from each speaker, we sorted the 
audio files of each speaker in the order of the file size and 
chose the largest 10 files for the test. The numbers of digits in 
the test database range from 5 to 7, but most of the utterances 
contained 7 digits. To assess the performance of the speech 
recognizer, a common metric, WER was computed as 

ref

WER ,S D I
N

+ +
=              (22) 

where S is the number of substitutions, D is the number of 
deletions, I is the number of insertions, and Nref is the number 
of words in the reference. 

The performance was also evaluated by SIR gain and 
MFCC distortion. The SIR gain is a common measure to 
evaluate an interference suppression algorithm. It is computed 
by the difference between the output SIR and input SIR as  

2 2
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where T is the length of time domain signal, and zx(t) and zn (t) 
are the target and interfering noise component of output signals, 
that is, time domain signals of ZX( f ) (=WH( f )X( f )) and ZN( f ) 
(=WH( f )N( f )), respectively. The true target and interfering 
noise component observed at the first microphone (labeled “1” 
in Fig. 1) are x1(t) and n1(t), respectively. The MFCC distortion 
was evaluated to assess the spectral distortion between the 
(interference suppressed) output signal and the clean target 
signal (multichannel) and computed by 

1

2

1

1MFCC distortion [ ( ) ( )] ,
K

i i
x z

k i
c k c k

K =

= −∑ ∑     (24) 

where 
1
( )i

xc k  and ( )i
zc k  are the i-th MFCC of the true 

target component at the first microphone and the output signal 
at k-th frame, respectively. The number of frames in a test 
audio file is represented by K. For the MFCC distortion 
measurement, the frequency region of 130 Hz to 6,800 Hz was 
filtered by 40 mel-scale filters, used in the feature extraction of 

the automatic speech recognizer (Sphinx-4).  

3. Tested Algorithms 

For the purpose of comparison, three other methods were 
also evaluated as well as the proposed algorithms. 

• MWF_PS: The original principal subspace-based MWF 
(baseline algorithm, as per (13) and (14)). 

• MWF_PS_MOD: The principal subspace-based MWF 
applied by the principal subspace modification with 
interpolation coefficient in (19). 

• MWF_PS_MOD_2: The principal subspace-based MWF 
applied by the principal subspace modification with 
frequency-band dependent interpolation coefficients in (21). 

• MWF_PS_SV: The principal subspace-based MWF where 
the principal subspace vector is replaced with the 
normalized steering vector of the target signal. The 
elements in the vector were further multiplied by the 
absolute values of the principal subspace vector. This 
method is equivalent to (18) with α=1. 

• MVDR: The minimum variance distortionless response 
beamformer given [9] by 

1
s

MVDR 1
s s

.H

−

−= N

N

R v
W

v R v
             (25) 

4. Estimation of Noise Correlation Matrix RN 

The noise correlation matrix RN is usually updated in the 
noise-only periods and kept unchanged during the target 
speech-present periods. For the purpose of the initialization of 
RN, 320 ms silence was appended ahead of every test audio file. 
This was done because some test audio files do not have 
enough leading silence period for the initialization of RN (the 
test audio files have leading silence ranging from 48 ms to  
800 ms before utterance starts). The 320 ms silence was used 
only for the RN initialization and not included for the 
evaluation of SIR gain, MFCC distortion, and speech 
recognizer. After the initialization, RN can be updated during 
noise-only periods using the target signal detector as per (4). 
However, the RN update is another topic of which performance 
is highly dependent on the target signal detector. In this work, 
the initialized RN was used as the estimate of RN and fixed 
throughout each audio file without further update.1) The  
smoothing coefficient for the RY update αY was set to 0.9. 
                                                               

1) Performance with RN update was also evaluated by hand-labeling the target signal 
presence. However, there were very small differences between with and without noise updating 
because interfering signals were spatially invariant (not moving), and most improvement with 
MWF was achieved by the spatial filtering. 
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5. Results and Discussion 

Figure 2 illustrates the angles between the acoustic transfer 
function vector H and the principal subspace vector as a 
function of input SIR before and after modifications in the 
presence of competing speech for five frequency bands. Angles 
were calculated for all frequency bins and for all input SIRs. 
Then, angles falling in each frequency band and in each SIR 
bin were averaged. The input SIR is not a global SIR but 
indicates the local SIR of a time-frequency unit in the short-
time frequency analysis. In this figure, H was approximated by 
the principal eigenvector of the target speech correlation matrix 
RX which was estimated using the oracle multichannel clean 
target signals. Before modifications, the angles between the 
two vectors increase at lower input SIR, which implies that the 
principal subspace vector 1q  deviates from H.  The modified 
principal subspace vector 1′q  becomes closer to H at lower 
SIRs. At higher SIRs, little benefit is observed, and 1q  is even 
closer to H in the high frequencies (4,000 Hz to 8,000 Hz). 

However, this disadvantage does not much affect the 
performance of the proposed method since most of the energy 
 

Fig. 2. Angles between the acoustic transfer function vector and
the principal subspace vector for five frequency bands
before and after the modification in the presence of
competing speech. “Modification I” and “modification II”
denote the principal subspace modification with
frequency-band independent (as per (19)) and dependent
(as per (21)) interpolation coefficients, respectively. 
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Fig. 3. Wideband spectrograms (a) of the clean target signal, (b) 
of a corrupted signal (two competing speech interferences 
coming at the angle of 40° and 80° to the direction of the 
target speech (“Angle 40+Angle 80”), SIR=0 dB), (c) of a 
signal processed by MWF_PS, (d) of a signal processed 
by MWF_PS_MOD_2, and (e) of a signal processed by
MVDR. The example sentence is 2.9 seconds long, and 
the frequency ranges up to 8 kHz. 

(a) 

(b) 

(c) 

(d) 

(e) 

 
 
of speech signal resides below 4,000 Hz, at least for voiced 
segments, for example, vowels. Note that angles in Fig. 2 
before modification tend to be larger at high frequency bands, 
which motivates the frequency-band dependent interpolation 
coefficient (as per (21)) for the principal subspace modification 
(indicated as “modification II”). At lower frequency bands   
(0 Hz to 500 Hz and 500 Hz to 1,000 Hz), “modification II” 
provides more angle reduction at low SIRs compared to 
“modification I,” which uses frequency-band independent 
interpolation coefficient (as per (19)). At the highest frequency 
band (4,000 Hz to 8,000 Hz), “modification II” reduces angles 
at high SIRs while slightly increasing angles at low SIRs. 

Figure 3(d) shows an example spectrogram of an enhanced 
signal using the proposed algorithm, MWF_PS_MOD_2. For 
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Fig. 4. SIR gains with interfering speech coming at 40°. 
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Fig. 5. SIR gains with interfering speech coming at 80°. 

MWF_PS 
MWF_PS_MOD 
MWF_PS_MOD_2 

MWF_PS_SV 
MVDR 

–5 0 5 10

20

15

5

0

10

SI
R

 g
ai

n 
(d

B
) 

15 20 25 30

20

15

5

0

10

SI
R

 g
ai

n 
(d

B
) 

SIR (dB) 

SIR (dB) 

 

 

Fig. 6. SIR gains with interfering speech signals coming at 40°
and 80°. 
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the purpose of comparison, Figs. 3(c) and 3(e) show signals 
processed by MWF_PS and MVDR, respectively. In the 
spectrogram in Fig. 3(e), MVDR shows higher SIR compared 
to the spectrogram in Fig. 3(d), but signal attenuation is 
noticeable at low frequencies due to microphone gain 
mismatch and results in worse performance in terms of MFCC 
distortion and WER (see Figs. 6, 9, and 12). 

Figures 4 to 12 show the performance achieved by each 
method when the target speech signal is corrupted in each of 
three different interference scenarios specified in section IV.1. 
The recognition test was also done for the clean signal and 
multichannel clean signal (convolved with the multichannel 
impulse response as described in section IV.1). The WERs for 
the two conditions were 0.52% and 0.98%, respectively, which 
shows that the multichannel target component received at the 
microphones insignificantly degrades the performance of the 
speech recognizer. The proposed methods, MWF_PS_MOD 
and MWF_PS_MOD_2, provide better performances in terms 
of MFCC distortion and WER of speech recognition than other 
tested algorithms for all the three interference scenarios. While 
the MVDR algorithm shows large SIR gain, it fails to reduce 
MFCC distortion or WER in most conditions. The main reason 
for the large WER of the MVDR algorithm in spite of the high 
SIR gain is due to signal distortion (see Fig. 3(e)) 
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Fig. 7. MFCC distortions with interfering speech coming at 40°.
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Fig. 8. MFCC distortions with interfering speech coming at 80°.
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Fig. 9. MFCC distortions with interfering speech signals coming 
at 40° and 80°. 
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Fig. 10. WERs with interfering speech coming at 40°. 
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Fig. 11. WERs with interfering speech coming at 80°. 
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Fig. 12. WERs with interfering speech signals coming at 40° and 
80°. 
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Fig. 13. SIR gains of the proposed method (MWF_PS_MOD) as 
a function of DOA error in the presence of competing 
speech at the four different SIR levels with the horizontal 
solid line showing the SIR gain of the MWF_PS. 
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caused by lack of account of the microphone gain mismatch, 
which was considered in the other  methods (MWF_PS, 
MWF_PS_MOD, MWF_PS_MOD_2, and MWF_PS_SV). 
Larger improvements were observed for the interference 
scenario “Angle 80” compared to “Angle 40,” which implies 
more effective interference suppression for a wider angle 
between the directions of target signal and interference. Among 
the three interference scenarios, the worst performance was 
achieved for “Angle 40 + Angle 80” where there were two 
different interfering noise sources. 

At 30 dB SIR, slight performance drops were observed in 
MFCC distortion and WER (Figs. 7 to 12), which were possibly 
caused by the fact that the proposed modification techniques 
slightly increased the angle (estimation error) between the 
acoustic transfer function vector and the principal subspace 
vector at high SIR (especially at high frequencies) as shown in 
Fig. 2. We believe that the estimation error of the interfering 
noise correlation matrix RN (see (4)) is the main cause of the 
increased angle at high SIR after modification. We also observe 
that the performance of the speech recognizer is much more 
related to the spectral distortion (MFCC distortion) than the SIR 
gain. Since the proposed principal subspace modification 
technique relies on information about the direction of the target 
signal, it is reasonable to ask how much the algorithm is affected 
by the estimation error of DOA. Figures 13 to 15 show the 
performance as a function of DOA error with 5 degree steps for 
interference coming at 40o. When the target signal comes from 
the front of the linear microphone array (see Fig. 1), the negative 
DOA error indicates the case where the DOA is estimated as if 
the target signal comes from the left of the target source. As 
shown in Fig. 13, large SIR gain was obtained as the DOA 
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Fig. 14. MFCC distortions of the proposed method (MWF_
PS_MOD) as a function of DOA error in the presence
of competing speech at the four different SIR levels
with the horizontal line showing the MFCC distortion
of the MWF_PS. 
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Fig. 15. WERs of the proposed method (MWF_PS_MOD) as a
function of DOA error in the presence of competing
speech at the four different SIR levels with the horizontal
line showing the WER of the MWF_PS. 
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error increases in the positive angle. This is because the 
interfering noise comes from the left of the target source, and 
larger SIR gain was obtained by increasing the angle between 
the interfering noise and the subspace vector. 

However, it turns out that this large SIR gain was obtained at 
the cost of spectral distortion, which was shown in the 
evaluation of the MFCC distortion and WER. The 
performance degrades as DOA error increases in both cases 
(negative or positive error) as shown in Figs. 14 and 15. 

In the figures, the horizontal lines indicate the performance 
of the MWF_PS, and as noted, the proposed method tolerates 

some errors depending on the input SIR, for example, up to 5 
degrees in the case of 5 dB.  

We also obtained similar results with the 
MWF_PS_MOD_2 algorithm, but only showed results with 
the MWF_PS_MOD algorithm in Figs. 13 to 15 for brevity.  

V. Conclusion 

In this paper, modification techniques for the principal 
subspace-based MWF have been proposed. The principal 
subspace vector was modified by the interpolation between the 
principal subspace vector and the steering vector of the target 
speech signal. It reduces the estimation error of the acoustic 
transfer function vector at low SIRs, where the conventional 
method MWF_PS usually performs poorly.  

The speech recognition test was conducted, and the results 
support the efficiency of the proposed method as a front 
processing of a distant-talking speech recognition system, 
especially in the presence of a strong interferer. It was also 
demonstrated that a frequency-band dependent interpolation 
provides further improvements compared to the frequency-
band dependent linear interpolation for the principal subspace 
modification. 
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