• Title/Summary/Keyword: sigH

Search Result 143, Processing Time 0.035 seconds

Glycothermal synthesis and characterization of $BaTiO_3$ glycolate (Glycothermal법에 의해 제조된 $BaTiO_3$ glycolate의 특성)

  • Kil, Hyun-Sig;Amar, Badrakh;Lim, Dae-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.286-287
    • /
    • 2006
  • Barium titanate ($BaTiO_3$) glycolate particles were synthesized at temperature as low as $100^{\circ}C$ through glycothermal reaction by using $Ba(OH)_2{\cdot}8H_2O$ and amorphous titanium hydrous gel as precursors and ethylene glycol as solvent. The particle size and morphology of $BaTiO_3$ glycolate powders can be controlled by varying the reaction conditions such as the reaction temperature and Ba:Ti molar ratio of starting precursors. After glycothermal treatment at $220^{\circ}C$ for 24 h in 1.25:1(Ba:Ti), the average particle size of the $BaTiO_3$ glycolate powder was about 200-400 nm and low agglomeration. $BaTiO_3$ powders were formed by heat-treating the glycolate powder in air at $500-1000^{\circ}C$. As a result, the size of $BaTiO_3$ crystallites changed from around 50-300 nm. It is also demonstrated that the size and shape of $BaTiO_3$ particles investigated as a function of calcination temperature. The $BaTiO_3$ particles obtained from optimum synthesis condition were pressed, sintered and measured for the dielectric property. The $BaTiO_3$ ceramics sintered at $1250^{\circ}C$ for 2 h had 98 % of theoretical density. The ceramics have an average grain size of about $1\;{\mu}m$ and displays the high dielectric constant (~3100) and low dielectric loss (<0.1) at room temperature.

  • PDF

Synthesis of Titanate Nanotubes Via A Hydrothermal Method and Their Photocatalytic Activities

  • Kim, Ye Eun;Byun, Mi Yeon;Lee, Kwan-Young;Lee, Man Sig
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.147-154
    • /
    • 2022
  • Titanate nanotubes (TNTs) were synthesized via alkaline hydrothermal treatment using commercial TiO2 nanoparticles (P25). The TNTs were prepared at various TiO2/NaOH ratios, hydrothermal temperatures, and hydrothermal times. The synthesized catalysts were characterized by X-ray diffraction, field-emission scanning electron microscopy, N2 adsorption-desorption isotherms, field-emission transmission electron microscopy, and ultraviolet-visible spectroscopy. TNTs were generated upon a decrease in the TiO2/NaOH ratio due to the dissolution of TiO2 in the alkaline solution and the generation of new Ti-O-Ti bonds to form titanate nanoplates and nanotubes. The hydrothermal treatment temperature and time were important factors for promoting the nucleation and growth of TNTs. The TNT catalyst with the largest surface area (389.32 m2 g-1) was obtained with a TiO2/NaOH ratio of 0.25, a hydrothermal treatment temperature of 130 ℃, and a hydrothermal treatment time of 36 h. Additionally, we investigated the photocatalytic activity of methyl violet 2B (MV) over the TNT catalysts under UV irradiation and found that the degradation efficiencies of the TNTs were higher than that of P25. Among the TNT catalysts, the TNT catalyst that was hydrothermally synthesized for 36 h (TNT 36 h) exhibited a 96.9% degradation efficiency and a degradation rate constant that was 4.8 times higher than P25 due to its large surface area, which allowed for more contact between the MV molecules and TNT surfaces and facilitated rapid electron transfer. Finally, these results were correlated with the specific surface area.

A Study on Transmuted Impurity Atoms formed in Neukon-Irradiated ZnO Thin films (중성자 조사한 ZnO 박막에 생성된 헥전환 불순물들fH 대한 연구)

  • Sun, Kyu-Tae;Park, Kwang-Soo;Han, Hyon-Soo;Kim, Sang-Sig
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.161-164
    • /
    • 2001
  • Transmuted impurity atoms formed in neutron-irradiated ZnO thin films were theoretically identified first and then experimentally confirmed by Photoluminescence (PL). ZnO thin films grown by plasma-assisted molecular beam epitaxy were irradiated by neutron beam at room temperature. Among eight isotropes naturely exiting in ZnO films, only $^{64}Zn$, $^{68}Zn$, $^{70}Zn$ and $^{18}O$ were expected to transmute into $^{65}Cu$, $^{69}Ga$, $^{71}Ga$ and $^{19}F$, respectively. The concentrations of these transmuted atoms were estimated by considering natural abundance, neutron fluence, and neutron cross section. The neutron-irradiated ZnO thin films were characterized by PL. In the PL spectra of these ZnO thin film, the Cu-related PL peaks were seen, but the Ga- or F-associated PL peaks were absent. This observation demonstrates the existence of $^{65}Cu$ in the ZnO. In this paper, emission mechanism of Cu impurities wil1 be described and the reason for the absence of the Ga- or F-associated PL peaks will be discussed.

  • PDF

Oxidative Stress in Ovariectomy Menopause and Role of Chondroitin Sulfate

  • Ha, Bae-Jin
    • Archives of Pharmacal Research
    • /
    • v.27 no.8
    • /
    • pp.867-872
    • /
    • 2004
  • Oxidative stress due to reactive oxygen species (ROS) can cause oxidative damage to cells. Cells have a number of defense mechanisms to protect themselves from the toxicity of ROS. Mitochondria are especially important in the oxidative stress as ROS have been found to be constantly generated as an endogen threat. Mitochondrial defense depends mainly on super-oxide dismutase (SOD) and glutathione peroxidase (GPx), whereas microsomal defense depends on catalase (CAT), which is an enzyme abundant in microsomes. SOD removes superoxide anions by converting them to $H_2O$$_2$, which can be rapidly converted to water by CAT and GPx. Also, GPx converts hydroperoxide (ROOH) into oxidized-glutathione (GSSG). Ovariectomized (OVX) rats are used as an oxidative stress model. An ovariectomy increased the levels of MDA, one of the end-products in the lipid peroxidative process, and decreased levels of the antioxidative enzymes; SOD, CAT and GPx. However, Chondroitin sulfate (CS) decreased the levels of MDA, but increased the levels of SOD, CAT and GPx in a dose-depen-dent manner. Moreover, inflammation and cirrhosis of liver tissue in CS- treated rats were sig-nificantly decreased. These results suggest that CS might be a potential candidate as an anti oxidative reagent.

Water Quality Improvement Plan for Small Streams in the Northernmost Basin of Bukhan River based on Pollution Grade and Typological Analysis Linkage (오염등급과 유형화 분석의 연계에 의한 북한강 최북단 유역 소하천의 수질개선방안 연구)

  • Lee, Yong-Seok;Jun, Man-Sig;Kim, Moon-Sook
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.3
    • /
    • pp.281-290
    • /
    • 2016
  • In the northernmost basin of the Bukhan River, pollution sources can have a concentrated distribution. In these basins, small streams show low flow with various and rapid water quality change in low pollutants load. Therefore, a water quality improvement plan of small streams and main stem will be necessary to establish the characteristics of small streams. This study selected a representative Hwacheon-gun in the northernmost basin of the Bukhan River. Hydro analysis was performed with GIS tools using DEM. A total of 152 small streams were listed. A total of 51 survey locations were selected after applying the selection criteria. Flow rate and water qualities were investigated. Pollution sources and pollutants loads were calculated for each basin. Pollution grade and typological classification were performed by cluster analysis using standardized environmental condition factors. As a result, G04, G01, H01 locations were found to have the worst pollution grades whereas J01, P01, and P02 had less pollution. Typological analyses were able to classify six types for the surveyed small streams. An effective water quality improvement plan was obtained based on the results of pollution grade and typological analysis using environmental condition factors of this study.

A Modified Metric of FMEA for Risk Evaluation Based on ASIL of Safety System (ASIL에 기초하여 수정된 안전시스템 FMEA 위험평가척도)

  • Baek, Myoung-Sig;Jang, Hyeon Ae;Kwon, Hyuck Moo
    • Journal of Korean Society for Quality Management
    • /
    • v.42 no.4
    • /
    • pp.543-562
    • /
    • 2014
  • Purpose: The purpose of this study is to suggest a modified approach that compensates some shortcomings of RPN with relevant strength of ASIL for Safety System and suggests systematic and logical approach for FMEA. Methods: By comparing the objectives, determination procedures, and key conceptual differences of RPN and ASIL, a refined method of risk evaluation and a new risk metric are devised. Results: While the traditional FMEA provides only rough evaluation of relative risk for each failure, the proposed method compensates its shortcomings with relevant strength of ASIL and provides a more logical and practical procedure of risk evaluation. Conclusion: The new metric RPM provides not only a comparative priority rank but also the degree of physical seriousness. Besides, it may have even more benefits for various applications if the severity can be expressed as mone tary amount of losses.

Photocurrent of HgTe Quantum Dots (HgTe 양자점의 광전류 특성)

  • Kim, Hyun-Suk;Kim, Jin-Hyoung;Lee, Joon-Woo;Song, Hyun-Woo;Cho, Kyoun-Gah;Kim, Sang-Sig
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.84-87
    • /
    • 2003
  • HgTe quantum dots(QDs) were synthesized in aqueous solution by colloidal method. The absorption and photoluminescence(PL) spectrum of the synthesized HgTe QDs revealed the strong exitonic peak in the IR region. And the photocurrent measurement of colloidal QDs are performed using IR light source. The lineshape of the wavelength dependent intensity of photocurrent was very similar to the absorption spectrum, indicating the charges generated by the absorption of photons give direct contribution to photocurrent. The channels of dark current are supposed $H_2O$ containing in thiol by the remarkable drop of current at the state of vacuum. It was thought that the proper passivation layer on the top of HgTe film reduce the dark current and the adequate choice of capping material improves the efficiency of the photocurrent in the HgTe QDs. This study suggests that HgTe QDs are very prospective materials for optoelectronics including photodetectors in the IR range.

  • PDF

Fabrication of $Al_2O_3$ nanotube with etching core material of one-dimensional ZnO/$Al_2O_3$ core/shell structure (1차원 ZnO/$Al_2O_3$ core/shell 구조에서 core 물질 식각방법에 의한 $Al_2O_3$ 나노튜브제작)

  • Hwang, Joo-Won;Min, Byung-Don;Lee, Jong-Su;Kim, Sang-Sig
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.37-40
    • /
    • 2003
  • Amorphous $Al_2O_3$ nanotubes have been fabricated by utilizing the ZnO nanowires as template with wet etching method. ZnO nanowires synthesized by thermal evaporation are conformally coated with $Al_2O_3$ by atomic-layer deposition(ALD) method. The $Al_2O_3$-coated ZnO nanowires are of core-shell structure; ZnO core nanowires and $Al_2O_3$ shells. When the $ZnO/Al_2O_3$ core-shell structure is dipped in $H_3PO_4$ solution at $25^{\circ}C$ for a 6 min, the core ZnO materials are completely etched, and only $Al_2O_3$ nanotubes are remained. This nanotube fabrication is technically easier than others, and simply approachable. Transmission electron microscopy shows that the $Al_2O_3$ nanotubes have various thicknesses that can be controlled.

  • PDF

A New Thermophile Strain of Geobacillus thermodenitrificans Having L- Arabinose Isomerase Activity for Tagatose Production

  • Baek, Dae-Heoun;Lee, Yu-Jin;Sin, Hong-Sig;Oh, Deok-Kun
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.312-316
    • /
    • 2004
  • Five strains, producing bacterial thermostable L-arabinose isomerase, were isolated from Korean soil samples obtained from compost under high temperature circumstances. Among these strains, the CBG-Al showed the highest L-arabinose isomerase activity at $60^\circ{C}$ and was selected as a D-tagatose producing strain from D-galactose. This strain was identified as Geobacillus thermodenitrificans based on the 16S rRNA analysis, and biological and biochemical characteristics. The isolated strain was aerobic, rod-shaped, Gram-positive, nonmotile, and an endospore-forming bacterium. No growth was detected in culture temperature below $40^\circ{C}$. The maximum growth temperature and maximum temperature of enzyme activity were $75^\circ{C}$ and $65^\circ{C}$, respectively. In metal ion effects, $Ca^{2+}$ was the most effective enzyme activator with the reaction rate by 150%. In a 5-1 jar fermentor with 3-1 MY medium, L-arabinose isomerase activity was growth-associated and pH decreased rapidly after the initial logarithmic phase.

Conformal $Al_{2}O_{3}$ nano-coating of ZnO nanowires (ZnO 나노와이어에 ALD 방법으로 균일하게 코팅된 $Al_{2}O_{3}$)

  • Hwang, Joo-Won;Min, Byung-Don;Lee, Jong-Su;Keem, Ki-Hyun;Kang, Myung-Il;Kim, Sang-Sig
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.47-50
    • /
    • 2002
  • ZnO nanowires were coated conformally with aluminum oxide ($Al_{2}O_{3}$) material by atomic layer deposition (ALD). The ZnO nanowires were first synthesized on a Si (100) substrate at $1380^{\circ}C$ from ball-milled ZnO powders by a thermal evaporation procedure with an argon carrier gas without any catalysts; the length and diameter of these ZnO nanowires are $20\sim30{\mu}m$ and $50{\sim}200$ nm, respectively. $Al_{2}O_{3}$ films were then deposited on these ZnO nanowires by ALD at a substrate temperature of $300^{\circ}C$ using trimethylaluminum (TMA) and distilled water ($H_{2}O$). Transmission electron microscopy (TEM) images of the deposited ZnO nanowires revealed that 40nm-thick $Al_{2}O_{3}$ cylindrical shells surround the ZnO nanowires.

  • PDF