• Title/Summary/Keyword: siderophore(s)

Search Result 82, Processing Time 0.028 seconds

Isolation and Characterization of Siderophore-Producing Bacteria with Various Plant Growth-Promoting Abilities as a Potential Biocontrol Agent (잠재적 미생물 농약으로서 다양한 식물성장 촉진 활성을 가진 siderophore 생산 세균의 분리와 특성)

  • Choi, Seunghoon;Yoo, Ji-Yeon;Park, SungJin;Park, MinJoo;Lee, O-Mi;Son, Hong-Joo
    • Journal of Environmental Science International
    • /
    • v.29 no.9
    • /
    • pp.925-933
    • /
    • 2020
  • To develop eco-friendly microbial inoculants, siderophore-producing bacteria were isolated and identified, and their production characteristics and plant growth-promoting abilities were investigated. A strain S21 was isolated from rhizosphere of Korean perilla (Perilla frutescens) and identified as Enterobacter amnigenus by phenotypic properties and 16S rRNA gene sequencing. The highest siderophore production was obtained in a medium containing 0.5% fructose, 0.1% urea, 0.5% K2HPO4 and 0.1% succinic acid. By using this improved medium, siderophore production increased by 2.5 times compared to that of basal medium. The strain S21 showed insoluble phosphate solubilizing, ammonification and antifungal activities, and also produced hydrolytic enzymes (protease and lipase), indoleacetic acid and 1-aminocyclopropane-1-carboxylate deaminase. Our data suggest that E. amnigenus S21 is a potential candidate that can be used as eco-friendly biocontrol agent and biofertilizer.

Production of Antifungal Materials by Bacillus sp. Which Inhibit Growth of Phytophthora infestans and Fusarium oxysporum (Phytophthora infestans와 Fusarium oxysporum의 생장을 저해하는 Bacillus 분리균주들의 항진균성 물질 생성능)

  • Lee, Kang-Hyeong;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.44 no.3
    • /
    • pp.258-263
    • /
    • 2008
  • Late blight, one of the most important disease in many agricultural crops, is caused by Phytophthora infestans. Fusarium wilt is a vascular disease of many plants caused by Fusarium oxysporum. Some bacteria isolated from rhizosphere were screened for their ability to inhibit the growth of F. oxysporum and P. infestans. Productions of siderophore, $\beta-1$,3-glucanase, hydrogen cyanide and chitinase by 4 isolated strains were examined. Among them, Bacillus sp. RFO41 most effectively inhibited the growth of F. oxysporum. The highest productions of siderophore and $\beta-l$,3-glucanase were shown in the culture of Bacillus sp. RFO41. Bacillus strain PS2 was most effective against P. infestans. PS2 showed the highest production of chitinase and hydrogen cyanide. A significant relationship was shown between the antagonistic effects of isolates against F. oxysporum and P. infestans and their production level of siderophore, $\beta-1$,3-glucanase, hydrogen cyanide, and chitinase.

Suppression of Bacterial Wilt with Fuorescent Pseudomonads, TS3-7 strain (Fluorescent siderophore 생산균주, TS3-7에 의한 풋마름병 발병 억제)

  • Kim, Ji-Tae;Cho, Hong-Bum;Kim, Shin-Duk
    • Applied Biological Chemistry
    • /
    • v.48 no.3
    • /
    • pp.296-300
    • /
    • 2005
  • Among the root colonizing and plant growth promoting bacteria isolated from the bacterial wilt suppressive soil, five strains were detected to produce siderophores by CAS agar assay. The most effective isolate, TS3-7 strain induced significant suppression of bacterial wilt disease in tomato and pepper plants. Seed treatment followed by soil drench application with this strain resulted in over 80% reduction of bacterial wilt disease compared with the control. Significant disease suppression by TS3-7 strain was related to the production of siderophore. Besides iron competition, induction of resistance of the host plant with siderophore was suggested to be another mode of action that suppress bacterial wilt, based on the lack of direct antibiosis against pathogen in vitro. According to Bergey's Manual of Systemic Bacteriology and 16S rDNA sequence data, TS3-7 stain was identified as Pseudomonas sp. TS3-7.

Factors Influencing Siderophore Production by Plant Growth Promoting Rhizopseudomonas Strains (식물생장촉진 근권 Pseudomonas의 Siderophore 생성에 관여하는 요인)

  • Seong, Ki-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.3
    • /
    • pp.287-294
    • /
    • 1995
  • This study demonstrates the influence of environmental conditions, other than iron, on pyoverdin production by fluorescent Pseudomosonas. In slightly acidic pH conditions(pH 6), cell yield was reduced while the siderophore production per cell yield was increased. The optimum temperatures for the siderophore production and cell yield was $19^{\circ}C$ and $28^{\circ}C$ for 7NSK2 and $12^{\circ}C$ and $19^{\circ}C$ for ANP15. The carbon and nitrogen balance showed that at low C : N ratio of the growth medium (higher nitrogen concentration), both cell yield and siderophore production was reduced. Use of different carbon sources revealed that citrate as a carbon source facilitated iron uptake and resulted in a significant reduction in siderophore production. However, at the late exponential phase, the iron content in the cell biomass was not significantly different from those grown in glucose or succinate. From these results it can be suggested that the environmental factors other than iron may also influence siderophore production by fluorescent pseudomonas.

  • PDF

Temperature dependent 2,3-dihydroxybenzoic acid production in Acinetobacter sp. B-W (Acinetobacter sp. B-W의 온도 의존적 2,3-dihydroxybenzoic acid 생산)

  • Kim, Kyoung-Ja;Lee, Jae-Hun;Yang, Yong-Joon
    • Korean Journal of Microbiology
    • /
    • v.51 no.3
    • /
    • pp.249-255
    • /
    • 2015
  • A soil microorganism producing iron chelator (siderophore) under low iron stress (up to $2{\mu}M$ of iron) was identified as Acinetobacter sp. B-W by 16S rDNA sequence analysis, biochemical-, physiological tests and morphological analysis using electron microscope. Catechol nature of siderophore was detected by Arnow test. Although optimal cell growth was identified at $36^{\circ}C$ in iron-limited media, significant quantities of siderophore were produced only at $28^{\circ}C$. Biosynthesis of siderophore was strongly inhibited by growth at $36^{\circ}C$. Production of siderophore was completely inhibited by $10{\mu}M\;FeCl_3$. Iron chelator produced from Acinetobacter sp. B-W was purified from supernatant using butanol extraction, Sephadex LH-20 column chromatography and HPLC. Purified sideropore was identified as 2,3-dihydroxybenzoic acid by HPLC, TLC and IR analysis.

Growth of Stahylococcus aureus with Defective Siderophore Production in Human Peritoneal Dialysate Solution

  • Park, Ra-Young;Sun, Hui-Yu;Choi, Mi-Hwa;Bae, Young-Hoon;Shin, Sung-Heui-
    • Journal of Microbiology
    • /
    • v.43 no.1
    • /
    • pp.54-61
    • /
    • 2005
  • In this study, we attempted to determine the effects of iron-availability and the activity of the bacterial iron-uptake system (IUS) on the growth of Staphylococcus aureus in human peritoneal dialysate (HPD) solution. A streptonigrin-resistant S. aureus (SRSA) strain, isolated from S. aureus ATCC 6538, exhibited defective siderophore production, thereby resulting in ineffective uptake of iron from low iron-saturated transferrin. The growth of both strains was stimulated in HPD solution supplemented with FeCl_3 and holotransferrin, but growth was inhibited in HPD solution which had been supplemented with apotransferrin and dipyridyl. The SRSA strain grew less robustly than did its parental strain in both iron-supplemented HPD solution and regular HPD solution. These results indicate that iron-availability and siderophore-mediated IUS activity in particular, the ability to produce siderophores and thus capture iron from low iron-saturated transferrin play critical roles in the growth of S. aureus in HPD solution. Our results also indicated that the possibility of using iron chelators as therapeutic or preventive agents warrants further evaluation.

Determination of Siderophore from Bacillus Mojavensis Using Liquid Chromatography quadrupole Time-of-flight Tandem Mass Spectrometry (액체크로마토그래피-사중극 비행시간형 탠덤질량분석기를 이용한 Bacillus mojavensis 균주 속 사이드로포어 규명)

  • Cheon, Hae In;Yeo, Mi Seon;Kim, Kang Min;Kang, Jae Seon;Pyo, Jaesung
    • Journal of Life Science
    • /
    • v.29 no.2
    • /
    • pp.198-201
    • /
    • 2019
  • Recently, it has been reported that Bacillus mojavensis possesses antifungal properties and plant growth-promoting activities, which are similar to the characteristics of siderophore. In this study, the siderophore produced by B. mojavensis was assessed using a solid phase extraction (SPE) cartridge and liquid chromatography quadrupole time-of-flight tandem mass spectrometry (Q-TOF MS/MS). After B. mojavensis was incubated in phenol medium for 16 hr and lyophilized, the sample was dissolved in water and loaded to an SPE cartridge to remove interferences. The cartridge was washed with 5% methanol in water and eluted with 2% formic acid in methanol sequentially. The eluted solution was evaporated under a stream of nitrogen gas and reconstituted in methanol. The reconstituted sample was filtered, and $1{\mu}l$ of the sample was assessed using Q-TOF MS/MS. The mass spectrometer was operated using the positive electrospray ionization mode. Based on the mass spectrum and tandem mass spectrum, the siderophore produced by B. mojavensis was bacillibactin, one of the catechol types of siderophore with a molecular weight of 882.2556. This siderophore analysis could provide a justification for the study of B. mojavensis as a functional food and for pharmaceutical applications.

Selection of the Auxin, Siderophore, and Cellulase-Producing PGPR, Bacillus licheniformis K11 and Its Plant Growth Promoting Mechanisms (Auxin, Siderophore, 및 Cellulase 생산성 다기능 식물생장촉진미생물 Bacillus licheniformis K11의 선발 및 식물생장촉진 효과)

  • Jung, Hee-Kyung;Kim, Jin-Rak;Woo, Sang-Min;Kim, Sang-Dal
    • Applied Biological Chemistry
    • /
    • v.50 no.1
    • /
    • pp.23-28
    • /
    • 2007
  • Auxin-producing antagonistic bacterium K11, which can inhibit Phytophtora capsici, was isolated from a local red-pepper field soil in Gyeong-buk. In order to check for additional PGPR(plant growth promoting rhizobacterium) functions of the strain K11, we confirmed siderophore and cellulase productions by CAS (chrome azurol S) blue agar and CMC plate with congo red, respectively. The strain K11 was identified as Bacillus licheniformis with 98% similarity on 16s rDNA comparison and Biolog analyses. B. licheniformis K11 promoted mung bean adventitious root induction and enhanced root growth of mung bean (160%), pea (150%), and Chinese cabbage (130%), Also, B. licheniformis K11 was able to effectively suppress (63%) P. capsici causing red-pepper blight in the pot in vivo test. Therefore, we could select a triple-functional PGPR which has auxin, siderophore, and cellulase producing ability for effective crops production in organic farming.

Plant Growth-Promoting Trait of Rhizobacteria Isolated from Soil Contaminated with Petroleum and Heavy Metals

  • Koo, So-Yeon;Hong, Sun-Hwa;Ryu, Hee-Wook;Cho, Kyung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.587-593
    • /
    • 2010
  • Three hundred and seventy-four rhizobacteria were isolated from the rhizosphere soil (RS) or rhizoplane (RP) of Echinochloa crus-galli, Carex leiorhyncha, Commelina communis, Persicaria lapathifolia, Carex kobomugi, and Equisetum arvense, grown in contaminated soil with petroleum and heavy metals. The isolates were screened for plant growth-promoting trait (PGPT), including indole acetic acid (IAA) productivity, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, and siderophore(s) synthesis ability. IAA production was detected in 86 isolates (23.0%), ACC deaminase activity in 168 isolates (44.9%), and siderophore(s) synthesis in 213 isolates (57.0%). Among the rhizobacteria showing PGPT, 162 isolates had multiple traits showing more than two types of PGPT. The PGPT-possesing rhizobacteria were more abundant in the RP (82%) samples than the RS (75%). There was a negative correlation (-0.656, p<0.05) between the IAA producers and the ACC deaminase producers. Clustering analysis by principal component analysis showed that RP was the most important factor influencing the ecological distribution and physiological characterization of PGPT-possesing rhizobacteria.

Candida albicans Can Utilize Siderophore during Candidastasis Caused by Apotransferrin

  • Lee Jue-Hee;Han Yong-Moon
    • Archives of Pharmacal Research
    • /
    • v.29 no.3
    • /
    • pp.249-255
    • /
    • 2006
  • Ability of iron acquisition of pathogenic microorganisms functions as a virulence factor. Candida albicans, a fungal pathogen that requires iron for growth, is susceptible to growth retardation by high-affinity iron binding proteins such as transferrin. Recently, we reported that C. albicans could utilize the heme as a part of heme-containing proteins dissociated by heme oxygenase, CaHMX1. In search of another pathway that C. albicans can use to bypass the growth regulation produced by iron limitation, this present study examined utilization of non-candidal siderophores such as Desferal and rhodotorulic acid (RA) for acquisition of inorganic iron by the fungus. C. albicans secreting no siderophores was cultured in iron-free (pretreated with apotransferrin for 24 h) (culture medium). Once growth of the yeast reached stasis from iron starvation, a siderophore was added to the culture media. Results showed that cultures containing apotransferrin within a dialysis membrane recovered growth to the level of untreated controls, whereas C. albicans yeast cells in direct contact with soluble iron-free (apo) transferrin recovered growth only partially. When static growth from iron limitation was reached, the addition of siderophore-apotransferrin complex to culture medium also permitted the yeast to recover growth from apotransferrin growth regulation. All the data show that C. albicans can utilize the non-candidal siderophores for iron acquisition under transferrin regulation as can pathogenic bacteria.