DOI QR코드

DOI QR Code

Plant Growth-Promoting Trait of Rhizobacteria Isolated from Soil Contaminated with Petroleum and Heavy Metals

  • Koo, So-Yeon (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Hong, Sun-Hwa (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Ryu, Hee-Wook (Department of Chemical and Environmental Engineering, Soongsil University) ;
  • Cho, Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University)
  • Received : 2009.07.15
  • Accepted : 2009.10.18
  • Published : 2010.03.31

Abstract

Three hundred and seventy-four rhizobacteria were isolated from the rhizosphere soil (RS) or rhizoplane (RP) of Echinochloa crus-galli, Carex leiorhyncha, Commelina communis, Persicaria lapathifolia, Carex kobomugi, and Equisetum arvense, grown in contaminated soil with petroleum and heavy metals. The isolates were screened for plant growth-promoting trait (PGPT), including indole acetic acid (IAA) productivity, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, and siderophore(s) synthesis ability. IAA production was detected in 86 isolates (23.0%), ACC deaminase activity in 168 isolates (44.9%), and siderophore(s) synthesis in 213 isolates (57.0%). Among the rhizobacteria showing PGPT, 162 isolates had multiple traits showing more than two types of PGPT. The PGPT-possesing rhizobacteria were more abundant in the RP (82%) samples than the RS (75%). There was a negative correlation (-0.656, p<0.05) between the IAA producers and the ACC deaminase producers. Clustering analysis by principal component analysis showed that RP was the most important factor influencing the ecological distribution and physiological characterization of PGPT-possesing rhizobacteria.

Keywords

References

  1. Ahmad, F., I. Ahmad, and M. S. Khan. 2008. Screening of freeliving rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol. Res. 163: 173-181. https://doi.org/10.1016/j.micres.2006.04.001
  2. Bayliss, C., E. Bent, D. E. Culham, S. MacLellan, A. J. Clarke, G. L. Brown, and J. M. Wood. 1997. Bacterial genetic loci implicated in the Pseudomonas putida GR12-2R3-canola mutualism: Identification of an exudates-inducible sugar transporter. Can. J. Microbiol. 43: 809-818. https://doi.org/10.1139/m97-118
  3. Belimov, A. A., N. Hontzeas, V. I. Safronova, S. V. Demchinskaya, G. Piluzza, S. Bullitta, and B. R. Glick. 2005. Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol. Biochem. 37: 241-250. https://doi.org/10.1016/j.soilbio.2004.07.033
  4. Braud, A., K. Jezequel, S. Bazot, and T. Lebeau. 2009. Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74: 280-286. https://doi.org/10.1016/j.chemosphere.2008.09.013
  5. Cattelan, A. J., P. G. Hartel, and J. J. Fuhrmann. 1999. Screening for plant growth-promoting rhizobacteria to promote early soybean growth. Soil Sci. Soc. Am. J. 63: 1670-1680. https://doi.org/10.2136/sssaj1999.6361670x
  6. Dakora, F. D. and D. A. Phillips. 2002. Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245: 35-47. https://doi.org/10.1023/A:1020809400075
  7. Dell'Amico, E., L. Cavalca, and V. Andreoni. 2005. Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metal-resistant, potentially plant growth-promoting bacteria. FEMS Microbiol. Ecol. 52: 153-162. https://doi.org/10.1016/j.femsec.2004.11.005
  8. Di Gregorio, S., M. Barbafieri, S. Lampis, A. M. Sanangelantoni, E. Tassi, and G. Vallini. 2006. Combined application of Triton X-100 and Sinorhizobium sp. Pb002 inoculum for the improvement of lead phytoextraction by Brassica juncea in EDTA amended soil. Chemosphere 63: 293-299. https://doi.org/10.1016/j.chemosphere.2005.07.020
  9. Dworkin, M. and J. W. Foster. 1958. Experiments with some microorganisms which utilize ethane and hydrogen. J. Bacteriol. 75: 592-603.
  10. Gerhardt, K. E., X.-D. Huang, B. R. Glick, and B. M. Greenberg. 2009. Phytoremediation and rhizoremediation of organic soil contaminants: Potential and challenges. Plant Sci. 176: 20-30. https://doi.org/10.1016/j.plantsci.2008.09.014
  11. Glick, B. R. 2003. Phytoremediation: Synergistic use of plants and bacteria to clean up the environment. Biotechnol. Adv. 21: 383-393. https://doi.org/10.1016/S0734-9750(03)00055-7
  12. Hynes, R. K., G. C. Leung, D. L. Hirkala, and L. M. Nelson. 2008. Isolation, selection, and characterization of beneficial rhizobacteria from pea, lentil, and chickpea grown in western Canada. Can. J. Microbiol. 54: 248-258. https://doi.org/10.1139/W08-008
  13. Imsande, J. 1998. Iron, sulfur, and chlorophyll deficiencies: A need for an integrative approach in plant physiology. Physiol. Plant 103: 139-144. https://doi.org/10.1034/j.1399-3054.1998.1030117.x
  14. Kang, S. M., G. J. Joo, M. Hamayun, C. I. Na, D. H. Shin, H. Y. Kim, J. K. Hong, and I. J. Lee. 2009. Gibberellin production and phosphate solubilization by newly isolated strain of Acinetobacter calcoaceticus and its effect on plant growth. Biotechnol. Lett. 31: 277-281. https://doi.org/10.1007/s10529-008-9867-2
  15. Kumino, T., K. Seaki, K. Nagaoka, H. Oyaizu, and S. Matsumoto. 2001. Characterization of copper-resistant bacterial community in rhizosphere of highly copper-contaminated soil. Eur. J. Soil Biol. 37: 95-102. https://doi.org/10.1016/S1164-5563(01)01070-6
  16. Lebeau, T., A. Braud, and K. Jezequel. 2008. Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: A review. Environ. Pollut. 153: 497-522. https://doi.org/10.1016/j.envpol.2007.09.015
  17. Lynch, J. and J. Whipps. 1990. Substrate flow in rhizosphere. Plant Soil 129: 1-10. https://doi.org/10.1007/BF00011685
  18. Ma, Y., M. Rajkumar, and H. Freitas. 2009. Improvement of plant growth and nickel uptake by nickel resistant-plant-growth promoting bacteria. J. Hazard. Mater. 166: 1154-1161. https://doi.org/10.1016/j.jhazmat.2008.12.018
  19. Meagher, R. B. 2000. Phytoremediation of toxic elemental and organic pollutants. Curr. Opin. Plant Biol. 3: 153-162. https://doi.org/10.1016/S1369-5266(99)00054-0
  20. Naureen, Z., S. Yasmin, S. Hameed, K. A. Malik, and F. Y. Hafeez. 2005. Characterization and screening of bacteria from rhizosphere of maize grown in Indonesian and Pakistani soils. J. Basic Microbiol. 45: 447-459. https://doi.org/10.1002/jobm.200510566
  21. Patel, D. K., G. Archana, and G. N. Kumar. 2008. Variation in the nature of organic acid secretion and mineral phosphate solubilization by Citrobacter sp. DHRSS in the presence of different sugars. Curr. Microbiol. 56:168-174. https://doi.org/10.1007/s00284-007-9053-0
  22. Penrose, D. M. and B. R. Glick. 2001. Levels of ACC and related compounds in exudates and extracts of canola seeds treated with ACC deaminase containing plant growth-promoting bacteria. Can. J. Microbiol. 47: 368-372. https://doi.org/10.1139/w01-014
  23. Poonguzhali, S., M. Madhaiyan, and T. Sa. 2006. Cultivationdependent characterization of rhizobacterial communities from field grown Chinese cabbage Brassica campestris spp. pekinensis and screening of traits for potential plant growth promotion. Plant Soil 286: 167-180. https://doi.org/10.1007/s11104-006-9035-1
  24. Press, C. M., J. E. Loper, and J. W. Kloepper. 2001. Role of iron in rhizobacteria-mediated induced systemic resistance of cucumber. Phytopathology 91: 593-598. https://doi.org/10.1094/PHYTO.2001.91.6.593
  25. Schwyn, B. and J. B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160: 47-56. https://doi.org/10.1016/0003-2697(87)90612-9
  26. Sheng, X. F., L. Y. He, L. Zhou, and Y. Y. Shen. 2009. Characterization of Microbacterium sp. F10a and its role in polycyclic aromatic hydrocarbon removal in low-temperature soil. Can. J. Microbiol. 55: 529-535. https://doi.org/10.1139/W09-005
  27. Weyens, N., D. van der Lelie, S. Taghavi, and J. Vangronsveld. 2009. Phytoremediation: Plant-endophyte partnerships take the challenge. Curr. Opin. Biotechnol. 20: 248-254. https://doi.org/10.1016/j.copbio.2009.02.012
  28. Whipps, J. M. 2001. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52(Roots Special Issue): 487-511. https://doi.org/10.1093/jexbot/52.suppl_1.487
  29. Zahir, Z. A., U. Ghani, M. Naveed, S. M. Nadeem, and H. N. Asghar. 2009. Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions. Arch. Microbiol. 191: 415-424. https://doi.org/10.1007/s00203-009-0466-y
  30. Zaidi, S., S. Usmani, B. R. Singh, and J. Musarrat. 2006. Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64: 991-997. https://doi.org/10.1016/j.chemosphere.2005.12.057

Cited by

  1. Plant growth promoting traits of phosphate-solubilizing rhizobacteria isolated from apple trees in trans Himalayan region of Himachal Pradesh vol.195, pp.5, 2010, https://doi.org/10.1007/s00203-013-0881-y
  2. Genotypic and Phenotypic Profile of Alkalophile Proteolytic Bacillus sp. Associated with Rhizosphere of Apple Trees in Trans Himalayas vol.86, pp.2, 2016, https://doi.org/10.1007/s40011-014-0447-z
  3. Plant growth promoting activities of rhizobacteria isolated from Podophyllum hexandrum growing in North-West regions of the Himalaya vol.87, pp.4, 2010, https://doi.org/10.1007/s40011-016-0722-2
  4. Plant growth promoting activities of rhizobacteria isolated from Podophyllum hexandrum growing in North-West regions of the Himalaya vol.87, pp.4, 2010, https://doi.org/10.1007/s40011-016-0722-2
  5. Tricalcium phosphate solubilization and nitrogen fixation by newly isolated Aneurinibacillus aneurinilyticus CKMV1 from rhizosphere of Valeriana jatamansi and its growth promotional effect vol.48, pp.2, 2010, https://doi.org/10.1016/j.bjm.2016.12.001
  6. Characterization of phosphate solubilizing fluorescent pseudomonads from the rhizosphere ofAloe vera(L.) vol.64, pp.7, 2010, https://doi.org/10.1080/03650340.2017.1407869