Browse > Article
http://dx.doi.org/10.5322/JESI.2020.29.9.925

Isolation and Characterization of Siderophore-Producing Bacteria with Various Plant Growth-Promoting Abilities as a Potential Biocontrol Agent  

Choi, Seunghoon (Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Institute, Pusan National University)
Yoo, Ji-Yeon (Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Institute, Pusan National University)
Park, SungJin (Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Institute, Pusan National University)
Park, MinJoo (Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Institute, Pusan National University)
Lee, O-Mi (Plant Quarantine Technology Center, Animal and Plant Quarantine Agency)
Son, Hong-Joo (Department of Life Science and Environmental Biochemistry, Life and Industry Convergence Institute, Pusan National University)
Publication Information
Journal of Environmental Science International / v.29, no.9, 2020 , pp. 925-933 More about this Journal
Abstract
To develop eco-friendly microbial inoculants, siderophore-producing bacteria were isolated and identified, and their production characteristics and plant growth-promoting abilities were investigated. A strain S21 was isolated from rhizosphere of Korean perilla (Perilla frutescens) and identified as Enterobacter amnigenus by phenotypic properties and 16S rRNA gene sequencing. The highest siderophore production was obtained in a medium containing 0.5% fructose, 0.1% urea, 0.5% K2HPO4 and 0.1% succinic acid. By using this improved medium, siderophore production increased by 2.5 times compared to that of basal medium. The strain S21 showed insoluble phosphate solubilizing, ammonification and antifungal activities, and also produced hydrolytic enzymes (protease and lipase), indoleacetic acid and 1-aminocyclopropane-1-carboxylate deaminase. Our data suggest that E. amnigenus S21 is a potential candidate that can be used as eco-friendly biocontrol agent and biofertilizer.
Keywords
Enterobacter amnigenus; Improved medium; PGPR; Siderophore;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Dye, R., Pal, K. K., Bhatt, D. M., Chauhan, S. M., 2004, Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting bacteria, Microbiol. Res., 159, 371-394.   DOI
2 Gerhardt, P., Murray, R. G. E., Costilow, R. N., Nester, E. W., Wood, W. A., Krieg, N. R., Phillips, G. B., 1981, Manual of methods for general bacteriology, American Society for Microbiology, Washington, D.C.
3 Hider, R., Kong, X., 2010, Chemistry and biology of siderophores, Nat, Prod, Rep., 27, 637-657.   DOI
4 Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T., Williams, S. T., 1994, Bergey's Manual of Determinative Bacteriology, The Williams and Wilkins Co., Baltimore.
5 Hopkinson, B. M., Morel, F. M., 2009, The role of siderophores in iron acquisition by photosynthetic marine microorganisms, Biometals, 4, 659-669.   DOI
6 Miethke, M., Marahiel, M. A., 2007, Siderophore-based iron acquisition and pathogen control, Microbiol. Mol. Biol. Rev., 71, 413-451.   DOI
7 Nautiyal, C. S., 1999, An Efficient microbiological growth medium for screening phosphate solubilizing microorganisms, FEMS Microbiol. Lett., 170, 265-270.   DOI
8 Pandey, P., Kang, S. C., Gupta, C. P., Maheshwari, D. K., 2005, Rhizosphere competent Pseudomonas aeruginosa GRC1 produces characteristic siderophore and enhances growth of Indian mustard (Brassica campestris), Curr. Microbiol., 51, 303-309.   DOI
9 Paul, D., Lade, H., 2014, Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review, Agron. Sustain. Dev., 34, 737-752.   DOI
10 Penrose, D. M., Glick, B. R., 2003, Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria, Physiol. Plant., 118, 10-15.   DOI
11 Reid, R. T., Live, D. H., Faulkner, D. J., Butler. A. A., 1993, Siderophore from a marine bacterium with an exceptional ferric ion affinity constant, Nature, 366, 455-458.   DOI
12 Saha, R., Saha, N., Donofrio, R. S., Bestervelt, L. L., 2013, Microbial siderophores: a mini review, J. Basic. Microbiol., 52, 1-15.   DOI
13 Sasirekha, B., Srividya, S., 2016, Siderophore production by Pseudomonas aeruginosa FP6, a biocontrol strain for Rhizoctonia solani and Colletotrichum gloeosporioides causing diseases in chilli, Agric. Nat. Resour., 50, 250-256.
14 Sayyed, R. Z., Badgujar, M. D., Sonawane, H. M., Mhaske, M. M., Chincholkar, S B., 2005, Production of microbial iron chelators (siderophores) by fluorescent pseudomonads, Indian J. Biotechnol., 4, 484-490.
15 Sayyed, R. Z., Chincholkar, S. B., 2010, Growth and siderophore production Alcaligenes faecalis is influenced by heavy metals. Indian J. Microbiol., 50, 179-182.   DOI
16 Schwyn, B., Neilands, J. B., 1987, Universal chemical assay for the detection an determination of siderophores, Anal. Biochem., 160, 46-56.
17 Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., Gobi, T. A., 2013, Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils, SpringerPlus, 2, 587-602.   DOI
18 Sharma, T., Kumar, N., Rai, N., 2016, Production and optimization of siderophore producing Pseudomonas species isolated from Tarai region of Uttarakhand, Int. J. Pharma. Bio. Sci., 7, 306-314.
19 Sheng, M., Jia, H., Zhang, G., Zeng, L., Zhang, T., Long, Y., Lan, J., Hu, Z., Zeng, Z., Wang, B., Liu, H., 2020, Siderophore production by rhizosphere biological control bacteria Brevibacillus brevis GZDF3 of Pinellia ternata and its antifungal effects on Candida albicans, J. Microbiol. Biotechnol., 30, 689-699.   DOI
20 Sulochana, M. B., Jayachandra, S. Y., Kumar, S. A., Parameshwar, A. B., Reddy, K. M., Dayanand, A., 2014, Siderophore as a potential plant growth-promoting agent produced by Pseudomonas aeruginosa JAS-25, Appl. Biochem. Biotechnol., 174, 297-308.   DOI
21 Tang, Y. W., Bonner, J., 1947, The enzymatic inactivation of indoleacetic acid I. some characteristics of the enzyme contained in pea seedlings, Arch. Biochem., 13, 17-25.
22 Yu, S., Teng, C., Bai, X., Liang, J., Song, T., Dong, L., Jin, Y., Qu, J., 2017, Optimization of siderophore production by Bacillus sp. PZ-1 and its potential enhancement of phytoextraction of Pb from soil, J. Microbiol. Biotechnol., 27, 1500-1512.   DOI
23 Spaepen, S., Vanderleyden, J., Remans, R., 2007, Indole-3-acetic acid in microbial and microorganism-plant signaling, FEMS Microbiol. Rev., 31, 425-448.   DOI
24 Alexander, D. B., Zuberer, D. A., 1991, Use of chrome azurol-S reagents to evaluate siderophore production by rhizosphere bacteria, Biol. Fert. Soils, 12, 39-45.   DOI
25 Arora, N. K., Kang, S. C., Maheshwari, D. K., 2001, Isolation of siderophore-producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut, Curr. Sci., 81, 673-677.
26 Barrow, G. I., Felthanm, R. K. A., 1993, Cowan and Steel's manual for the identification of medical bacteria, 3rd ed., Cambridge University Press, New York, 94-150.
27 Butler, A., 2005, Marine siderophores and microbial iron mobilization, Biometals, 18, 369-374.   DOI
28 Cocking, E. C., 2003, Endophytic colonization of plant roots by nitrogen-fixing bacteria, Plant Soil, 252, 169-175.   DOI
29 Compant, S., Duffy, B., Nowak, J., Clement, C., Barka, E. I., 2005, Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects, Appl. Environ. Microbiol., 71, 4951-4959.   DOI
30 Cornelis, P., 2010, Iron uptake and metabolism in pseudomonads, Appl. Microbiol. Biotechnol., 86, 1637-1645.   DOI