Browse > Article
http://dx.doi.org/10.4014/jmb.0907.07017

Plant Growth-Promoting Trait of Rhizobacteria Isolated from Soil Contaminated with Petroleum and Heavy Metals  

Koo, So-Yeon (Department of Environmental Science and Engineering, Ewha Womans University)
Hong, Sun-Hwa (Department of Environmental Science and Engineering, Ewha Womans University)
Ryu, Hee-Wook (Department of Chemical and Environmental Engineering, Soongsil University)
Cho, Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.3, 2010 , pp. 587-593 More about this Journal
Abstract
Three hundred and seventy-four rhizobacteria were isolated from the rhizosphere soil (RS) or rhizoplane (RP) of Echinochloa crus-galli, Carex leiorhyncha, Commelina communis, Persicaria lapathifolia, Carex kobomugi, and Equisetum arvense, grown in contaminated soil with petroleum and heavy metals. The isolates were screened for plant growth-promoting trait (PGPT), including indole acetic acid (IAA) productivity, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, and siderophore(s) synthesis ability. IAA production was detected in 86 isolates (23.0%), ACC deaminase activity in 168 isolates (44.9%), and siderophore(s) synthesis in 213 isolates (57.0%). Among the rhizobacteria showing PGPT, 162 isolates had multiple traits showing more than two types of PGPT. The PGPT-possesing rhizobacteria were more abundant in the RP (82%) samples than the RS (75%). There was a negative correlation (-0.656, p<0.05) between the IAA producers and the ACC deaminase producers. Clustering analysis by principal component analysis showed that RP was the most important factor influencing the ecological distribution and physiological characterization of PGPT-possesing rhizobacteria.
Keywords
Rhizobacteria; plant growth-promoting trait; indole acetic acid (IAA); 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase; siderophore(s);
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Bayliss, C., E. Bent, D. E. Culham, S. MacLellan, A. J. Clarke, G. L. Brown, and J. M. Wood. 1997. Bacterial genetic loci implicated in the Pseudomonas putida GR12-2R3-canola mutualism: Identification of an exudates-inducible sugar transporter. Can. J. Microbiol. 43: 809-818.   DOI   ScienceOn
2 Glick, B. R. 2003. Phytoremediation: Synergistic use of plants and bacteria to clean up the environment. Biotechnol. Adv. 21: 383-393.   DOI   ScienceOn
3 Imsande, J. 1998. Iron, sulfur, and chlorophyll deficiencies: A need for an integrative approach in plant physiology. Physiol. Plant 103: 139-144.   DOI   ScienceOn
4 Lynch, J. and J. Whipps. 1990. Substrate flow in rhizosphere. Plant Soil 129: 1-10.   DOI
5 Schwyn, B. and J. B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160: 47-56.   DOI   ScienceOn
6 Dell'Amico, E., L. Cavalca, and V. Andreoni. 2005. Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metal-resistant, potentially plant growth-promoting bacteria. FEMS Microbiol. Ecol. 52: 153-162.   DOI   ScienceOn
7 Poonguzhali, S., M. Madhaiyan, and T. Sa. 2006. Cultivationdependent characterization of rhizobacterial communities from field grown Chinese cabbage Brassica campestris spp. pekinensis and screening of traits for potential plant growth promotion. Plant Soil 286: 167-180.   DOI   ScienceOn
8 Naureen, Z., S. Yasmin, S. Hameed, K. A. Malik, and F. Y. Hafeez. 2005. Characterization and screening of bacteria from rhizosphere of maize grown in Indonesian and Pakistani soils. J. Basic Microbiol. 45: 447-459.   DOI   ScienceOn
9 Di Gregorio, S., M. Barbafieri, S. Lampis, A. M. Sanangelantoni, E. Tassi, and G. Vallini. 2006. Combined application of Triton X-100 and Sinorhizobium sp. Pb002 inoculum for the improvement of lead phytoextraction by Brassica juncea in EDTA amended soil. Chemosphere 63: 293-299.   DOI   ScienceOn
10 Gerhardt, K. E., X.-D. Huang, B. R. Glick, and B. M. Greenberg. 2009. Phytoremediation and rhizoremediation of organic soil contaminants: Potential and challenges. Plant Sci. 176: 20-30.   DOI   ScienceOn
11 Whipps, J. M. 2001. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52(Roots Special Issue): 487-511.   DOI   ScienceOn
12 Hynes, R. K., G. C. Leung, D. L. Hirkala, and L. M. Nelson. 2008. Isolation, selection, and characterization of beneficial rhizobacteria from pea, lentil, and chickpea grown in western Canada. Can. J. Microbiol. 54: 248-258.   DOI   ScienceOn
13 Ahmad, F., I. Ahmad, and M. S. Khan. 2008. Screening of freeliving rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol. Res. 163: 173-181.   DOI   ScienceOn
14 Belimov, A. A., N. Hontzeas, V. I. Safronova, S. V. Demchinskaya, G. Piluzza, S. Bullitta, and B. R. Glick. 2005. Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol. Biochem. 37: 241-250.   DOI   ScienceOn
15 Press, C. M., J. E. Loper, and J. W. Kloepper. 2001. Role of iron in rhizobacteria-mediated induced systemic resistance of cucumber. Phytopathology 91: 593-598.   DOI   ScienceOn
16 Patel, D. K., G. Archana, and G. N. Kumar. 2008. Variation in the nature of organic acid secretion and mineral phosphate solubilization by Citrobacter sp. DHRSS in the presence of different sugars. Curr. Microbiol. 56:168-174.   DOI   ScienceOn
17 Sheng, X. F., L. Y. He, L. Zhou, and Y. Y. Shen. 2009. Characterization of Microbacterium sp. F10a and its role in polycyclic aromatic hydrocarbon removal in low-temperature soil. Can. J. Microbiol. 55: 529-535.   DOI   ScienceOn
18 Braud, A., K. Jezequel, S. Bazot, and T. Lebeau. 2009. Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74: 280-286.   DOI   ScienceOn
19 Lebeau, T., A. Braud, and K. Jezequel. 2008. Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: A review. Environ. Pollut. 153: 497-522.   DOI   ScienceOn
20 Zaidi, S., S. Usmani, B. R. Singh, and J. Musarrat. 2006. Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64: 991-997.   DOI   ScienceOn
21 Dakora, F. D. and D. A. Phillips. 2002. Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245: 35-47.   DOI   ScienceOn
22 Weyens, N., D. van der Lelie, S. Taghavi, and J. Vangronsveld. 2009. Phytoremediation: Plant-endophyte partnerships take the challenge. Curr. Opin. Biotechnol. 20: 248-254.   DOI   ScienceOn
23 Kang, S. M., G. J. Joo, M. Hamayun, C. I. Na, D. H. Shin, H. Y. Kim, J. K. Hong, and I. J. Lee. 2009. Gibberellin production and phosphate solubilization by newly isolated strain of Acinetobacter calcoaceticus and its effect on plant growth. Biotechnol. Lett. 31: 277-281.   DOI   ScienceOn
24 Cattelan, A. J., P. G. Hartel, and J. J. Fuhrmann. 1999. Screening for plant growth-promoting rhizobacteria to promote early soybean growth. Soil Sci. Soc. Am. J. 63: 1670-1680.   DOI
25 Dworkin, M. and J. W. Foster. 1958. Experiments with some microorganisms which utilize ethane and hydrogen. J. Bacteriol. 75: 592-603.
26 Penrose, D. M. and B. R. Glick. 2001. Levels of ACC and related compounds in exudates and extracts of canola seeds treated with ACC deaminase containing plant growth-promoting bacteria. Can. J. Microbiol. 47: 368-372.   DOI   ScienceOn
27 Kumino, T., K. Seaki, K. Nagaoka, H. Oyaizu, and S. Matsumoto. 2001. Characterization of copper-resistant bacterial community in rhizosphere of highly copper-contaminated soil. Eur. J. Soil Biol. 37: 95-102.   DOI   ScienceOn
28 Ma, Y., M. Rajkumar, and H. Freitas. 2009. Improvement of plant growth and nickel uptake by nickel resistant-plant-growth promoting bacteria. J. Hazard. Mater. 166: 1154-1161.   DOI
29 Meagher, R. B. 2000. Phytoremediation of toxic elemental and organic pollutants. Curr. Opin. Plant Biol. 3: 153-162.   DOI   ScienceOn
30 Zahir, Z. A., U. Ghani, M. Naveed, S. M. Nadeem, and H. N. Asghar. 2009. Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions. Arch. Microbiol. 191: 415-424.   DOI   ScienceOn