• 제목/요약/키워드: short column effect

검색결과 73건 처리시간 0.024초

Investigation of short column effect of RC buildings: failure and prevention

  • Cagatay, Ismail H.;Beklen, Caner;Mosalam, Khalid M.
    • Computers and Concrete
    • /
    • 제7권6호
    • /
    • pp.523-532
    • /
    • 2010
  • If an infill wall in a reinforced concrete frame is shorter than the column height and there is no initial gap between the column and the infill wall, the short column effect can occur during an earthquake shaking. This form of damage is frequently observed in many earthquake-damaged buildings all around the world and especially in Turkey. In this study, an effective method, which consists of placing additional infill wall segments surrounding the short column, to prevent this type of failure is examined. The influence of adding infill wall in the reduction of the shear force in the short column is also investigated. A parametric study is carried out for one-storey infilled frames with one to five bays using the percentage of the additional infill wall surrounding the short column and the number of spans as the parameters. Then the investigation is extended to a case of a multistorey building damaged due to short column effect during the 1998 Adana-Ceyhan earthquake in Turkey. The results show that the addition of the infill walls around the potential short columns is an effective way to significantly reduce the shear force.

Failure analysis of reinforced concrete frames with short column effect

  • Caglar, Naci;Mutlu, Mahir
    • Computers and Concrete
    • /
    • 제6권5호
    • /
    • pp.403-419
    • /
    • 2009
  • Short column effect is cause to failure of columns which may result in severe damages or even collapse during earthquakes. The scope of the study is mainly to reveal the effect of short column on the holistic behaviour of the buildings. The nonlinear analysis of 31 different frame buildings containing short column problem are carried out using finite element method. The finite element models were selected by 2 bays and 3 stories. Since the short columns are generally seen in the first storey of the buildings, in the study, they are only constructed in the same storey. The adverse effect of the short column on the response of buildings was shown in terms of the total load factor and displacement capacity of building. The response of buildings in terms of ground storey displacements is presented in figures and discussed. It is revealed that if the window openings are constructed along the bays, the total load capacity is decreased 85% compared with reference model in which all of bays are filled with infill walls.

A case study of reinforced concrete short column under earthquake using experimental and theoretical investigations

  • Chen, Chen-Yuan;Liu, Kuo-Chiang;Liu, Yuh-Wehn;Huang, Wehn-Jiunn
    • Structural Engineering and Mechanics
    • /
    • 제36권2호
    • /
    • pp.197-206
    • /
    • 2010
  • The purpose of this paper is to carry out both experimental and theoretical investigations of R.C. short column subjected to horizontal forces under constant compressive loading. Eight specimens with section of 40 cm ${\times}$ 40 cm, height 40 cm and 50 cm and different type hoop were used of the steel cage to detect the seismic behavior of reinforced concrete short columns. Hoop spacing of column, strength of concrete, and the axial load of experiments were the three main parameters in this test. A series of equations were derived to reveal the theory could be used on analysis short column, too. Through test failure model of R.C short column being established, the type of hoop affects the behavior R.C short column in ductility rather than in strength. And the effect of analysis by Truss Model is evident and reliable in shear failure model of short column.

A study of the infill wall of the RC frame using a quasi-static pushover analysis

  • Mo Shi;Yeol Choi;Sanggoo Kang
    • Computers and Concrete
    • /
    • 제32권5호
    • /
    • pp.455-464
    • /
    • 2023
  • Seismologists now suggest that the earth has entered an active seismic period; many earthquake-related events are occurring globally. Consequently, numerous casualties, as well as economic losses due to earthquakes, have been reported in recent years. Primarily, significant and colossal damage occurs in reinforced concrete (RC) buildings with masonry infill wall systems, and the construction of these types of structures have increased worldwide. According to a report from the Ministry of Education in the Republic of Korea, many buildings were built with RC frames with masonry infill walls in the Republic of Korea during the 1980s. For years, most structures of this type have been school buildings, and since the Pohang earthquake in 2017, the government of the Republic of Korea has paid close attention to this social event and focused on damage from earthquakes. From a long-term research perspective, damage from structural collapse due to the short column effect has been a major concern, specifically because the RC frame with a masonry infill wall system is the typical form of structure for school buildings. Therefore, the short column effect has recently been a major topic for research. This study compares one RC frame with four different types of RC frames with masonry infill wall systems. Structural damage due to the short column effect is clearly analyzed, as the result of this research is giving in a higher infill wall system produces a greater shear force on the connecting point between the infill wall system and the column. The study is expected to be a useful reference for research on the short column effect in RC frames with masonry infill wall systems.

How to reduce short column effects in buildings with reinforced concrete infill walls on basement floors

  • Bikce, Murat
    • Structural Engineering and Mechanics
    • /
    • 제38권2호
    • /
    • pp.249-259
    • /
    • 2011
  • Band windows are commonly used in reinforced concrete structures for the purpose of ventilation and lighting. These applications shorten the lengths of the columns and, consequently, they are subject to higher shear forces as compared with those of hollow frames. Such short columns may cause some damages during earthquakes. Hence, these effects of short columns should be minimized by choosing the dimensions of the band windows properly in order to prevent serious damages in the structure. This can be achieved by taking into account the parameters that are crucial in causing short column effect. Hence, in this study, the effects of those parameters such as the widths and heights of the band windows, the number of bays and storeys within the frame, and the heights of storeys are examined. The effects of the parameters are analyzed using time history analysis. One of the important results of these analyses, is that, the widths of the band windows should be less than 60% of the clear span between the columns, whereas, their heights should be greater than 35% of the clear storey height in order to decrease the short column effects substantially during the design of the reinforced concrete structures.

Earthquake performance of FRP retrofitting of short columns around band-type windows

  • Kocak, Ali
    • Structural Engineering and Mechanics
    • /
    • 제53권1호
    • /
    • pp.1-16
    • /
    • 2015
  • Due to design codes and regulations and the variety of building plans in Turkey, it is very often seen that band-type windows are left for ventilation and lightening of the basements of buildings which are used for various purposes such as workplaces and storage. Therefore when the necessary support measures cannot be given, short columns are subjected to very high shear forces and so damage occurs. One of the precautions to avoid the damage of short column mechanisms in buildings where band-type windows are in the basement is to strengthen the short columns with fiber reinforced polymer (FRP). In this study, the effect of the FRP retrofitting process of the short columns around band-windowed structures, which are found especially in basement areas, is analyzed in accordance with Turkish Seismic Code 2007 (TSC 2007). Three different models which are bare frame, frame with short columns and retrofitted short columns with FRP, are created and analyzed according to TSC 2007 performance analysis methods to understand the effects of band windows in basements and the effect of FRP retrofitting.

Experimental tests on biaxially loaded concrete-encased composite columns

  • Tokgoz, Serkan;Dundar, Cengiz
    • Steel and Composite Structures
    • /
    • 제8권5호
    • /
    • pp.423-438
    • /
    • 2008
  • This paper reports an experimental investigation of the behaviour of concrete-encased composite columns subjected to short-term axial load and biaxial bending. In the study, six square and four L-shaped cross section of both short and slender composite column specimens were constructed and tested to examine the load-deflection behaviour and to obtain load carrying capacities. The main variables in the tests were considered as eccentricity of applied axial load, concrete compressive strength, cross section, and slenderness effect. A theoretical procedure considering the nonlinear behaviour of the materials is proposed for determination of the behaviour of eccentrically loaded short and slender composite columns. Two approaches are taken into account to describe the flexural rigidity (EI) used in the analysis of slender composite columns. Observed failure mode and experimental and theoretical load-deflection behaviour of the specimens are presented in the paper. The composite column specimens and also some composite columns available in the literature have been analysed and found to be in good agreement with the test results.

Buckling Strength Analysis of Box-Column Including the Coupling Effect Between Local and Global Buckling

  • Paik, Jeom-K.
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1988년도 가을 학술발표회 논문집
    • /
    • pp.36-42
    • /
    • 1988
  • In this study, a formulation of the idealized plate element based upon the idealized structural unit method(ISUM) firstly proposed by Ueda et.al is made in an attempt to analyze the geometric nonlinear behaviour up to the buckling strength of thin-walled long structures like box-column structure including the coupling effect between local and global buckling. An application to the example box-column is also performed and it is found that the present method gives reliable results with consuming very short computing times and therefore is very useful for evaluation of the buckling strength of thin-walled long structures.

  • PDF

지오그리드 보강 Stone Column의 장.단기 하중 지지 특성 - 유한요소해석을 통한 고찰 (Short - and Long-term Load Carrying Capacity of Geogrid Reinforced Stone Column - A numerical investigation)

  • 이대영;김선빈;송아란;유충식
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.434-444
    • /
    • 2006
  • The stone column method is widely used in Europe as an alternative to conventional pile foundations. Several benefits of using the stone column method include sound performance, low cost, expediency of construction, and liquiefaction resistance, among others. Recently, geosynthetic-encased stone column approach has been developed to improve its' load carrying capacity through increasing confinement effect. Although such a concept has successfully applied in practice, fundamentals of the method have not been fully explored. This Paper Presents the results of an investigation on the loading carriying capacity of geogrid-encased stone column using a series of 2D finite element analyses. The results of the analyses indicated improved short- and long-term carrying capacity of the geogrid-encased stone column method over the conventional strone column method with no encasing.

  • PDF

끼움벽과 단주효과를 고려한 학교건축물의 내진성능평가 (Seismic Performance Evaluation of School Building Short Column Effect)

  • 주창길;한주연;박태원
    • 교육시설 논문지
    • /
    • 제21권2호
    • /
    • pp.33-39
    • /
    • 2014
  • In the case of low-rise buildings in seismic performance evaluation, lateral force resistance of the pillars affects the seismic performance of the building. Evaluation of the seismic performance of the column is determined by the holding performance is evaluated by comparing the shear strength and bending strength it was destroyed bylow intensity. In case of the school building, in order to install the large windows for ventilation and lighting of the partition walls are located between the pillars. The case of the pillars of these, shear failure occurs in the event of an earthquake is often, in the seismic performance evaluation, partition wall and the wall of the shim is evaluated ignoring, pillar of the general pillars If you have to calculate the results of the seismic performance distorted that are destroyed by bending behavior can be evaluated as often. Results of the study, when assessed by distinguishing the effective length of the column, it was found that when a seismic load is applied, it is possible to accurately predict the failure mode, reliable results of seismic performance evaluation of the school building.