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Buckling Strength Analysis of Box-Column

Including the Coupling Effect Between Local and Global Buckling

by

Jeom K. Paik *

ABSTRACT
In this study, a formulation of the

idealized plate element based upon the
jdealized structural unit method(ISUM)
firstly proposed by Ueda et.al is made
in an attempt to analyze the geometric
nonlinear behaviour up to the buckling
strength of thin-walled long structures
like box~column structure including the
coupling effect between local and global
buckling. An application to the example
box-column is also performed and it is
found that the present method gives reli-
able results with consuming very short
computing times and therefore is very
useful for evaluation of the buckling
strength of thin-walled long structures.

1. Introduction
Buckling strength of thin-walled long
structures under axial compression such
as box-column largely decreases compared
with Euler buckling strength which is ob-
tained assuming that the local member does
not buckle if local buckling in the struc-
tural components takes place as the exte-
rnal load increases because the global
bending rigidity of the whole structure
is remarkably reduced after local buckling.
Therefore, in order to evaluate actual
and reliable buckling strength of thin-

walled structures, the coupling effect
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between the local and global buckling
should be included.

Finite element method is a powerful
approach to solve this problem but requi-
res the enormous computing times for the
analysis of large sized structures. As a
countermeasure to this problem, Ueda et.
al. proposed the idealized structural unit
method(ISUM)[1,2] in the early 70s. This
method is very useful and practical for
evaluation of buckling and ultimate stre-
ngth of large sized structures such as
ship and offshore structures. In this me-
thod, some idealized elements for the ob-
jective structure to be analyzed should
be developed in advance, like in the case
of FEM. '

In this study, ISUM is applied to
estimate the buckling strength of box-
column structure under axial compression
considering the local and global geometric
nonlinearity and then an idealized plate
element for box-column composed of the
plate elements shown in Fig.l is developed
in advance. After the accuracy and relia-
bility of the developed element is checked
comparing with the results by the other
methods like FEM and experiments, it is
then applied to estimation of the buckling
strength of the example box-column.



2. Modelling of the Example Box-Column

Box-column structure used in marine
and onshore structures is composed of the
plate members in the outer shell as shown
in Fig.l and in general, diaphram is also
attatched preventing the transverse cross-
section from the racking deformation.
Therefore, the plate member is considered
to be one of the elements in this study
and then actual geometric nonlinear beha-
viour of this element is simplified.

2.1 Boundary Condition of the Element

In general, boundary condition of the
plate element depends upon the restraints
of the supporting members and the adjacent
elements.

The boundaries of the idealized plate
element developed in this study is assumed
that :

1) Since the bending rigidity of the
supporting members is large enough,
local deflection at edges does not
occur,

2) The restraint to the rotation at
all edges is free,

3) The in-plane movement freely takes

place but all edges remain straight

even after the plate deflection

occurs.
2.2 Loading Condition of the Element

If box-column structure is subjected

to axial compression, axial compressive
(or tensile) stress, shear stress and/or
in-plane bending stress develop on the
plate elements as shown in Fig.2. Since

the magnitude of the in-plane bending stress

is relatively small and then its influence
to the geometric nonlinear behaviour of
the element which is very small as compared
with the whole structure is negligible,

only average axial and shear stresses are
considered in the local element level(see
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Fig.2) but the effect of bending stresses
to the whole structural level is of course
included.

3. Analytical Theory - Formulation of the
Idealized Plate Element
3.1 Nodal Forces and Nodal Displacements

In actual plate elements, large de-
flection due to the Tocal and global buc-
kling of the structure takes place and
therefore at least five degrees of freedom
at each nodal point are necessary to exp-
ress the geometric nonlinear behaviour of
the element when using the finite element
method.

In the idealized structural unit me-
thod, however, the geometric nonlinear
behaviour of the element is carefully eva-
luated by analytical, numerical and/or
experimental method and then based upon
the results, the equivalent flat plate
comprsing the effect of reduction of the
in-plane stiffness after local buckling
is formulated. Therefore, the idealized
plate element with the equivalent in-plane
stiffness is considered to be always flat
even after local buckling and then only
three degrees of freedom at each nodal
point are necessary in this case :
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(1)
where,§{R} is nodal force vector and{ U}
nodal displacement vector and Rx’Ry and
RZ are axial forces in the x and y dire-
ction, respectively and u,v and w displa-
cements in the x and y direction, respec-
tively (see Fig.3).



3.2 Displacement Function
Displacement function corresponding
to the nodal displacements defined in the

above is adopted as :
by 2
w = 0, +o;,_x+o.,j+auj*;(b )
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3.3 Relationship Between Displacements
and Strains
Displacement-strain relation including
the geometric nonlinear effect due to both
the in-plane and out-of-plane large defor-

mation s given as :
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wheree;,qjand 5%5are the membrane strains.
In the incremental and matrix form,
Eq.(3) may become :
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3.4 Relationship Between Stresses and
Strains
In general, stress-strain relation in
the incremental form is given :

fac} = CD1 (o€} (5)
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where,
[D] : stress-strain matrix.
3.4.1 Before Buckling
In the prebuckling range, stress-
strain matrix is given as :
B e 1 Y ©
)= [p] = = » | :»
[~} (-] —z— (6)
where, E is Young's modulus and Y is
Poisson's ratio.
3.4.2 After Buckling
I'n the postbuckling range, the in-
plane stress distribution of the plate
element is not uniform, in which maximum
stress is developed at the corner and
minimuym stress in the middle of the plate
that is largely deflected and then is acted
by the membrane stress (see Fig.4).
In this study, deflected plate
is replaced by the equivalent flat plate
which includes the effect due to reduct-
jon of the in-plane stiffness. Since bou-
ndaries of the plate element remain stra-
jght, axial strains at the edges are cal-
culated as :

1 Y
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(7)
And also shear strain.is defined by using
the effective shearing modulus Go [3,4]:

Ty = g, (8)

Since the stress distribution 0},0&
in Eq.(7) and the effective shearing mo-
dulus Ge in Eg.(8) can be evaluated by
the analytical and/or numerical method
[3-5], stress-strain relation in the post-
buckling range is obtained in the incre-
mental form :

fac} = Y {a€} (9)



where, [D]B : stress-strain matrix in the

postbuckling range.

3.5 Derivation of the Tangent Stiffness
Matrix
3.5.1 Total Lagrangian Formulation
The tangent stiffness equation of one
element in the Tocal coordinate is finally
expressed by the following equation :

{1} +{ar} = [KI®{au}  (10)

In the above equation, {L3}is the un-
balance force vector which is due to the
discrepancies between the internal and
ecternal forces and should be made to be-
come zero to secure the equilibrium condi-
tion in which the iteration procedure is

introduced and [K]E is the tangent stiffness

matrix of the element.
In general, [K]E can be subdivided
into four terms as :

[KI® = (KD, + (K], + (K + (K]
(11)

In the right hand side of Eq.(ll), the

first term [K]p represents the small, in-
plane deformation and the second term [K]b
the small, out-of-plane deformation. The
third term [K]G is so called the initijal

deformation stiffness matrix which consists

of three terms indicating the initial def-
ormation effect associated with in-plane,
out-of-plane and their interactions and
the last term [K]d’ so called the initial
stress stiffness matrix indicates the
large deformation effect due to the exis-

tence of the initial stress and is composed

of two terms related to in-plane and out-

of-plane large deformation, in which the

term to their interations is not appeared.
In the calculation Eq.(11), [D]E in

the prebuckling range and [D]B in the post-
buckling range are used as the stress-
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strain matrix of the element.
3.5.2 Updated Lagrangian Formulation

The stiffness matrix [K]E in Eq.(11)
was derived under the consideration the
global coordinate of the objective plate
to be analyzed is fixed with regard to the
overall, space one, which results in the
possibility of the use of.the identical
transformation matrix through every incre-
mental loading steps.

On the other hand, using the concept
of the updated Lagrangian formulation
which the global coordinate may become to
be updated at each deformed state, although
the transformation matrix should be newly
set up, the initial deformation stiffness
matrix [K]G in Eq.{(11) can be removed as:

(KI° = (K1, + K]y + (K], (12)

3.6 Buckling condition
As the external load increases, if

the stress components acted on the element
satisfy the buckling condition, the plate
may buckle. Therefore, in this study, the
buckling interaction equation proposed in
Ref.[6]
stress components is adopted :

Bef (e =0

which is formulated in terms of

(13)

Buckling judgement is made by the
magnitude (or sign) of Jg in Eq.(12): if
Ta<0, the plate is still in the pre-
buckling range, iffg=0, the plate just
buckles and 1f{;>o , the plate is in the
postbuckling range.

3.7 Transformation Matrix

In general, the formulation of the
exact transformation matrix for the rec-
tangular plate is difficult to get it so
that the approximate assuming 'that the



element is in a plane including at least
three nodal points is made in this study.
4. Numerical example

Based upon the above analytical theory
a computer program was completed. The com-

puter program applies the updated Lagrangian

formulation for the stiffness matrix, sky
line method for the solution of the stiff-
ness equation and Newton-Rapson method for
the convergence of the unbalance force.

An application to the example box-
column structure as shown in Fig.l is per-
formed in an attempt to analyze the geo-
metric nonlinear behaviour up to the buck-
ling strength, including the coupling

effect between the Tocal and global buckling.

Fig.5.a shows the load-shortening
curve and Fig.5.b the load-deflection cur-
ve for the example box-column structure,
indicating that the global buckling strenth

of the structure when not considering the
local buckling is in good agreement with
Euler buckling strength and when consider-
ing the local buckling effect, since the
global bending rigidity considerably
decreases after local buckling, the global
buckling strength is remarkably reduced
and the reduction amount for this exahp]e
is about half of Euler buckling strength.

5. Conclusion
In this study, an idealized plate

element based upon the idealized structu-
ral unit method (ISUM) is formulated in an
attempt to analyze the geometric nonlinear
behaviour up to the buckling strength of
the thin-walled long structures like box-
column structure which are composed of the
plate members. An application to the exam-

ple box-column structure is also made and
it is found that the present method gives

the reliable results with consuming very
short computing times.
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