• 제목/요약/키워드: shoots production

검색결과 215건 처리시간 0.026초

An option to provide water and fertilization for rice production in alkaline soil: fertigation with slow release fertilizers (SRFs)

  • Young-Tae Shin;Kangho Jung;Chung-Keun Lee;Jwakyung Sung
    • Korean Journal of Agricultural Science
    • /
    • 제49권4호
    • /
    • pp.923-931
    • /
    • 2022
  • An increasing global population requires a greater food supply, and accordingly there is demand for enhanced production of rice, as a major crop plant that covers half of the world's population. Rice production in arid area is extremely difficult due to poor soil fertility, salinity, deficit of irrigation water, and weather conditions. The aim of the present study was to determine whether various fertilization recipes could provide a countermeasure to allow rice production while also providing soil amendment such as soil pH adjustment. The study was conducted at an experimental field of the United Arab-Emirates (UAE) from January to April, 2022. Rice seedlings (cv. Asemi, alkaline-resistant) were transplanted in plastic containers, and different types of water and nutrient managements were employed as follows: water management (flooding and aerobic for NPKs treatment group) and nutrient management (NPKs, slow release fertilizers [SRFs] and SRFs + NPK-1 treatment groups with flooding). Water and nutrient management did not show any effect on soil pH adjustment. Rice growth was significantly enhanced in the flooding compared to the aerobic condition, whereas the effect of nutrient management clearly differed among the treatment groups, with SRFs + NPK-1 showing the best results followed by SRFs and NPKs. Most of the fertilization groups markedly accumulated soluble sugars in the shoots and grains of rice plants, but concomitantly a decrease in the roots. Overall, the level of starch showed a tendency of relatively slight perturbation by fertilization. Taken together, the results indicate that soil physical structure should be preferentially amended to find the key for suitable rice production.

In vitro Plantlet Regeneration of Loblolly Pine, Pitch Pine, and Their Hybrid -The Culture of Embryonic Tissues- (조직배양(組織培養)에 의한 테다, 리기다 및 교잡종(交雜種) 소나무의 식물체(植物體) 번식(繁殖) -배조직(胚組織)의 배양(培養)-)

  • Yi, Jae-Seon
    • Journal of Korean Society of Forest Science
    • /
    • 제78권4호
    • /
    • pp.401-411
    • /
    • 1989
  • The embryos of Pinus taeda, P. rigida, and P. taeda ${\times}$ rigida were cultured for adventitious shoot regeneration in vitro. Culture media were modified from Gresshoff and Doy (MGD), Murashige and Skoog (MMS), Lloyd and McCown (MLM), and Schenk and Hildebrandt (MSH). NAA was added to initiation media at a concentration of 0.1 or 0.01 mg/l. BAP was used at the concentrations of 0.1. 0.5, 1, 2, or 5mg/l. Each explant was induced for 3-4 weeks on solid medium. All explants were cultured up to 16 weeks. Illumination was about $1506{\pm}540lux$ at the level of the tissues in the growth room with a temperature of $25{\pm}2^{\circ}C$. A 16-hour photoperiod per 24 hours was used. Half-strength medium was used for all the subcultures. For shoot production by loblolly pine, MMS, MLM, or MSH is preferred with 5 mg/l BAP with either 0.1 or 0.01 mg/l NAA. For shoot production by pitch pine, MMS, MLM, or MSH is recommended with 2 or 5 mg/l BAP with 0.1 mg/l NAA. For shoot production by the hybrid pine, MMS or MLM is more effective with 1, 2 or 5 mg/l BAP with 0.1 mg/l NAA. There were no differences recognized among the species tried in the patterns of bud formation and shoot development. Different composition of media, in major and minor salts or possibly in vitamins, should be tested for the two developmental stages of adventitious shoots ; the induction of shoot buds and the elongation of them into shoots.

  • PDF

In vitro Regeneration and Genetic Stability Analysis of the Regenerated Green Plants in Japanese Blood Grass (Imperata cylindrica 'Rubra') (홍띠 기내 재생과 재생 녹색식물체의 유전적 안정성)

  • Kang, In-Jin;Lee, Ye-Jin;Bae, Chang-Hyu
    • Korean Journal of Plant Resources
    • /
    • 제34권2호
    • /
    • pp.156-165
    • /
    • 2021
  • The in vitro regeneration was established, and the genetic stability among the mother plants (control) and the micropropagated green plants was evaluated using ISSR markers in Imperata cylindrica 'Rubra', Poaceae which containing important bioenergy plants. Green shoots were multiply induced from growing point culture via callus on MS medium supplemented with 0.01 mg/L NAA and 2 mg/L BA, and the shoots were proliferated on the MS medium with rooting. Rooted plantlets were transplanted to the pot with 100% survival rate. Using ISSR markers, somaclonal variation was analyzed in eight mother plants (control), ten green-regenerant cultivated at culture room (ReR) and ten green-regenerant cultivated at field condition (ReF). All ISSRs produced a total of 97 bands, and the scorable bands varied from one to seven with an average of 4.4 bands per primer. The polymorphism rate of ReRs and ReFs was 4.1% and 3.1% respectively, showing higher rate than that of control (0%). The genetic similarity matrix (GSM) among all accessions ranged from 0.919 to 1.0 with a mean of 0.972. According to the clustering analysis, ReFs and mother plants were divided into two independent groups. The results indicate that no clear genetic diversity was detected among regenerated plants, and ISSR markers were useful tool for identification of somaclonal variation of regenerants.

Gene expression analysis related to ethylene induced female flowers of cucumber (Cucumis sativus L.) at different photoperiod

  • Ikram, Muhammad Maulana Malikul;Esyanti, Rizkita Rachmi;Dwivany, Fenny Martha
    • Journal of Plant Biotechnology
    • /
    • 제44권3호
    • /
    • pp.229-234
    • /
    • 2017
  • Photoperiod is one of the factors affecting productivity of cucumber plant by inducing ethylene hormone production and so triggering flower sex differentiation into female flower. However, only few studies have been perfomed in order to reveal the effect of photoperiod in molecular level in relation to the flower differentiation. Therefore, in this study, Mercy cultivar of cucumber (andromonoecious) was treated with photoperiod of 8, 12, 16 hours of light, while control received no treatment of additional light. Photoperiod of 8 hours was achieved by blocking the sunlight with shade net and 16 hours by giving longer light exposure using white LEDs. Cucumber's flowers were quantified and the apical and lateral shoots were extracted to evaluate the gene profile related to the photoperiod, ethylene production, and female flower differentiation, which were CsACS2, CsETR1, CsCaN, and CsPIF4 using PCR method. Photoperiod of 8 hours affected the production of female flower with average number of 6.7 flowers in main stem and 8.0 flowers in lateral stem, compared to photoperiod of 12 and 16 hours which produced 3.7 and 2.0 flowers in main stem with 7.0 and 11.3 in lateral stem, respectively. In silico studies in this experiment resulted in proposed model of signal transduction that showed the connection between ethylene production and flower differentiation. PCR analysis confirmed the expression of CsACS2, CsETR1, and CsCaN, that was positively correlated with numbers of female flowers in cucumber, but the expression of CsPIF4 that represent photoperiod haven't been confirmed correlated with the ethylene production and flower differentiation.

Regeneration and Acclimatization of Regenerants in Long-term in vitro Culture of Japanese Blood Grass (Imperata cylindrica 'Rubra')

  • Eon-Yak Kim;In-Jin Kang;Ye-Jin Lee;Baul Yang;Vipada Kantayos;Chang-Hyu Bae
    • Korean Journal of Plant Resources
    • /
    • 제36권6호
    • /
    • pp.588-596
    • /
    • 2023
  • Long-term culture of cell lines is an important issue in in vitro culture and in plant science. In this study, the regeneration ability and ex vitro acclimatization of regenerants were evaluated. The ploidy level of regenerants derived from long-term cultured cell lines was measured in Imperata cylindrica 'Rubra', Poaceae. Adventitious buds (shoots) were successfully induced from five-year-cultured calli on MS medium containing 0.1 mg/L BA or 2.0 mg/L TDZ, combined with 0.01 mg/L auxins (IAA, IBA, NAA and 2,4-D), respectively. Adventitious roots were also induced on MS medium containing 0.01 mg/L auxins (IBA, NAA and 2,4-D), respectively. Interestingly, regenerants with both red and green leaf were successfully obtained when regenerants were cultured on MS medium with 9% sucrose. Regenerants derived from long-term cultured calli were transferred to pots using an optimal acclimatization process and successfully adapted to both pot and soil conditions. Moreover, the ploidy level was measured using calli and regenerants that had been kept on MS medium containing various kinds of plant growth regulators (PGRs).

Highly efficient production of transgenic Scoparia dulcis L. mediated by Agrobacterium tumefaciens: plant regeneration via shoot organogenesis

  • Aileni, Mahender;Abbagani, Sadanandam;Zhang, Peng
    • Plant Biotechnology Reports
    • /
    • 제5권2호
    • /
    • pp.147-156
    • /
    • 2011
  • Efficient Agrobacterium-mediated genetic transformation of Scoparia dulcis L. was developed using Agrobacterium tumefaciens strain LBA4404 harboring the binary vector pCAMBIA1301 with ${\beta}$-glucuronidase (GUS) (uidA) and hygromycin phosphotransferase (hpt) genes. Two-day precultured leaf segments of in vitro shoot culture were found to be suitable for cocultivation with the Agrobacterium strain, and acetosyringone was able to promote the transformation process. After selection on shoot organogenesis medium with appropriate concentrations of hygromycin and carbenicillin, adventitious shoots were developed on elongation medium by twice subculturing under the same selection scheme. The elongated hygromycin-resistant shoots were subsequently rooted on the MS medium supplemented with $1mg\;l^{-1}$ indole-3-butyric acid and $15mg\;l^{-1}$ hygromycin. Successful transformation was confirmed by PCR analysis using uidA- and hpt-specific primers and monitored by histochemical assay for ${\beta}$-GUS activity during shoot organogenesis. Integration of hpt gene into the genome of transgenic plants was also verified by Southern blot analysis. High transformation efficiency at a rate of 54.6% with an average of $3.9{\pm}0.39$ transgenic plantlets per explant was achieved in the present transformation system. It took only 2-3 months from seed germination to positive transformants transplanted to soil. Therefore, an efficient and fast genetic transformation system was developed for S. dulcis using an Agrobacterium-mediated approach and plant regeneration via shoot organogenesis, which provides a useful platform for future genetic engineering studies in this medicinally important plant.

Effects of Carbon and Nitrogen Sources on the Shoot Formation in bioreator culture of Scrophularia buergeriana Miquel (현삼에서 탄소원과 질소원의 종류와 농도가 기내 식물체 분화에 미치는 영향)

  • Lim, Wan-Sang;Chae, Young-Am
    • Korean Journal of Medicinal Crop Science
    • /
    • 제8권1호
    • /
    • pp.9-13
    • /
    • 2000
  • To determine the proper carbon and nitrogen sources and their proper levels for mass micro propagation of Scrophularia buergeriana Miquel, tonic and curing cough experiment were applied and a method for mass cultivation by using bioreactors (2.5 L) was expinined. Proper ratio of $NH_4NO_3\;:\;$KNO_3$ was 413 mg/L : 1900 mg/L for multiple shoot production. Sucrose was more effective than glucose or fractose as carbon source and 3% concentration was good for shoot formation. Total nitrogen was not detected after six weeks both in 500 ml flask and bioreactor culture. Sucrose was decreased sharply after two weeks and there was no sucrose left after three weeks both in 500 ml flask and bioreactor culture. The stirrer in bioreactor caused shear stress to shoots severely. The sphere type bioreactor was better than the cylinder type and removal of inner loop in sphere type was more effective to avoid shear stress.

  • PDF

Comparison of Frequency Embryogenesis through Microspore Culture of Domestic Cultivars in Brassica napus L. (소포자 배양에 의한 반수체 식물유도 효율이 높은 국내 유채 품종 선발)

  • Park, Yoon-Jung;Kim, Kwang-Soo;Jang, Young-Seok;Kim, Chul-Woo;Bang, Jin-Ki
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • 제51권spc1호
    • /
    • pp.237-241
    • /
    • 2006
  • This experiment was carried out comparison with haploid plants productivity by microspore culture among domestic cultivars of Brassica napus L. Isolated microspore from flower buds were cultured on NLN medium supplemented with 13% sucrose, $0.05mg/{\ell}$ BA and $0.5mg/{\ell}$ NAA. Genotype was important factor in haploid embryo productivity 'Tamlayuchae' showed the highest haploid embryo production frequency (176 embryos formed from 1 flower bud). But, 'Hallayuchae' and 'Youngsanyuchae' were not generated embryo even cell division. When suspension culture on NLN liquid medium at 100 rpm, embryos were developed multilobe abnormal embryo cluster. Multilobe abnormal embryos on MS medium basal solid medium were regenerated multiple shoots. Regenerated haploid plant with well developed shoots and roots on MS basal medium were successfully transferred to pots.

Effects of Pseudomonas aureofaciens 63-28 on Defense Responses in Soybean Plants Infected by Rhizoctonia solani

  • Jung, Woo-Jin;Park, Ro-Dong;Mabood, Fazli;Souleimanov, Alfred;Smith, Donald L.
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권4호
    • /
    • pp.379-386
    • /
    • 2011
  • The objective of this work was to investigate the ability of the plant growth-promoting rhizobacterium Pseudomonas aureofaciens 63-28 to induce plant defense systems, including defense-related enzyme levels and expression of defense-related isoenzymes, and isoflavone production, leading to improved resistance to the phytopathogen Rhizoctonia solani AG-4 in soybean seedlings. Seven-day-old soybean seedlings were inoculated with P. aureofaciens 63-28, R. solani AG-4, or P. aureofaciens 63-28 plus R. solani AG-4 (P+R), or not inoculated (control). After 7 days of incubation, roots treated with R. solani AG-4 had obvious damping-off symptoms, but P+R-treated soybean plants had less disease development, indicating suppression of R. solani AG-4 in soybean seedlings. Superoxide dismutase (SOD) and catalase (CAT) activities of R. solani AG-4-treated roots increased by 24.6% and 54.0%, respectively, compared with control roots. Ascorbate peroxidase (APX) and phenylalanine ammonia lyase (PAL) activities of R. solani AG-4-treated roots were increased by 75.1% and 23.6%, respectively. Polyphenol oxidase (PPO) activity in soybean roots challenged with P. aureofaciens 63-28 and P+R increased by 25.0% and 11.6%, respectively. Mn-SOD (S1 band on gel) and Fe-SOD (S2) were strongly induced in P+R-treated roots, whereas one CAT (C1) and one APX (A3) were strongly induced in R. solani AG-4- treated roots. The total isoflavone concentration in P+Rtreated shoots was 27.2% greater than the control treatment. The isoflavone yield of R. solani AG-4-treated shoots was 60.9% less than the control.

Effects of Clipping on Growth and Yield in Sweet Potato (고구마 경엽절제가 생육 및 수량에 미치는 영향)

  • 김익제;손석용;이재웅;유인모;이철희;김태수
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • 제47권3호
    • /
    • pp.143-146
    • /
    • 2002
  • This study was undertaken to learn what ratio of clipping top was the most optimum for minimizing of the decrease of root yield of over 50g in sweetpotato at early cultivation. The test variety was "Shinyulmi" which was transplanted for early cultivation on April 18. The ratios of cripping top were 5, 10, 15, 20, and 25 percents. The date of clipping top was June 20 when the shoots were transplanted for double cropping. The total length of vine, the number of branches per plant, the number of tuberous roots over 50g and average root weight over 50g were not affected by clipping top. The ratio of root yield over 50g was lower over 20 percents of clipping top. The fresh weights per plant of top and bottom were similar as compared control with 15 percents of clipping top. In conclusion, the optimum ratio of clipping top was 15 percents for maximizing of the production of the shoots in sweetpotato for double cropping. cropping.