DOI QR코드

DOI QR Code

In vitro Regeneration and Genetic Stability Analysis of the Regenerated Green Plants in Japanese Blood Grass (Imperata cylindrica 'Rubra')

홍띠 기내 재생과 재생 녹색식물체의 유전적 안정성

  • Kang, In-Jin (Graduate School Student, Department of Plant Production Sciences, Graduate School of Sunchon National University) ;
  • Lee, Ye-Jin (Graduate School Student, Department of Plant Production Sciences, Graduate School of Sunchon National University) ;
  • Bae, Chang-Hyu (Graduate School Student, Department of Plant Production Sciences, Graduate School of Sunchon National University)
  • 강인진 (순천대학교 대학원 식물생산과학부) ;
  • 이예진 (순천대학교 대학원 식물생산과학부) ;
  • 배창휴 (순천대학교 대학원 식물생산과학부)
  • Received : 2021.01.15
  • Accepted : 2021.03.04
  • Published : 2021.04.01

Abstract

The in vitro regeneration was established, and the genetic stability among the mother plants (control) and the micropropagated green plants was evaluated using ISSR markers in Imperata cylindrica 'Rubra', Poaceae which containing important bioenergy plants. Green shoots were multiply induced from growing point culture via callus on MS medium supplemented with 0.01 mg/L NAA and 2 mg/L BA, and the shoots were proliferated on the MS medium with rooting. Rooted plantlets were transplanted to the pot with 100% survival rate. Using ISSR markers, somaclonal variation was analyzed in eight mother plants (control), ten green-regenerant cultivated at culture room (ReR) and ten green-regenerant cultivated at field condition (ReF). All ISSRs produced a total of 97 bands, and the scorable bands varied from one to seven with an average of 4.4 bands per primer. The polymorphism rate of ReRs and ReFs was 4.1% and 3.1% respectively, showing higher rate than that of control (0%). The genetic similarity matrix (GSM) among all accessions ranged from 0.919 to 1.0 with a mean of 0.972. According to the clustering analysis, ReFs and mother plants were divided into two independent groups. The results indicate that no clear genetic diversity was detected among regenerated plants, and ISSR markers were useful tool for identification of somaclonal variation of regenerants.

바이오에너지작물의 중요한 소재를 제공하는 화본과 식물인 홍띠(Imperata cylindrica 'Rubra')의 기내재생 식물체의 유전적 안정성을 조사하고자 생장점 부위를 기내배양하여 재분화시킨 녹색 재생식물체의 변이성을 ISSR 마커로 조사하였다. MS(Murashige and Skoog, 1962) 배지에 식물체 기부의 생장점 부위를 적출하여 캘러스를 유도하고(0.1 mg/L 2,4-D와 2 mg/L BA), 캘러스 증식(0.1 mg/L 2,4-D와 0.05 mg/L BA), 신초 재분화(0.01 mg/L NAA와 2 mg/L BA) 후 MS 배지에서 발근시켜 재분화 식물체를 유도하고 100% 활착시켰다. 대조구인 모식물체 홍띠 8개체, 1년간 노지 포장에서 재배중인 재분화 녹색 식물체 10개체와 실험실 내 화분에서 재배중인 재분화 녹색 식물체 10개체, 총 28개체에 대하여 ISSR 분석한 결과 유전적 다형성은 재분화 식물체가 실내포트 재배식물체 4.1% 및 노지 재배식물체 3.1%로 0%인 대조구보다 높게 나타났다. 또한, 총 28개체들 간의 유전적 유사도를 평가한 결과, 유전적 유사도 지수는 0.919~1.0 사이에 분포하며, 평균 0.972로 유전적 충실도가 높게 나타났다. 군집분석 결과 노지에서 재배한 재분화 식물체와 모식물체(대조군)가 독립적으로 유집되었다.

Keywords

Acknowledgement

이 결과는 「2020년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학협력기반 지역혁신 사업」 지원 과제(과제고유번호: 1345329679, 세부과제번호: 2020 대학혁신-146)로 수행되었습니다. 식물재료를 제공해 주신 '하늘정원 야생화' 이동국 대표님께 감사드립니다.

References

  1. Akashi, R. and H. Ikeda. 1989. Callus formation anfd plant regeneration from immature inflorescences and apical meristems of cogongrass (Imperata cylindrica L.). Grassl. Sci. 34:333-335.
  2. Amin, S., T.A. Wani, Z.A. Kaloo, S. Singh, R. John, U. Majeed and G.A. Shapoo. 2018. Genetic stability using RAPD and ISSR markers in efficiently in vitro regenerated plants of Inula royleana DC. Meta Gene 18:100-106. https://doi.org/10.1016/j.mgene.2018.08.006
  3. Aversano, R., S. Savarese, J.M.De Nova, L. Frusciante, M. Punzo and D. Carputo. 2009. Genetic stability at nuclear and plastid DNA level in regenerated plants of Solanum species and hybrids. Euphytica 165:353-361. https://doi.org/10.1007/s10681-008-9797-z
  4. Bednarek, P.T. and O. Renata. 2020. Plant tissue culture environment as a switch-key of (epi) genetic changes. Plant Cell Tiss. Organ Cult. 140:245-257. https://doi.org/10.1007/s11240-019-01724-1
  5. Cho, J.-H. and J.-H. Byeon. 2011. Establishment of callus induction and plant regeneration system from mature seeds of Miscanthus sinensis. Korean J. Plant Res. 24(5):628-635. https://doi.org/10.7732/kjpr.2011.24.5.628
  6. Coronel, C.J., A.I. Gonzalez, M.L. Ruiz and C. Polanco. 2018. Analysis of somaclonal variation in transgenic and regenerated plants of Arabidopsis thaliana using methylation related metAFLP and TMD markers. Plant Cell Rep. 37:137-152. https://doi.org/10.1007/s00299-017-2217-x
  7. Dewir, Y.H., Nurmansyah, Y. Naidoo and J.A.T. da Silva. 2018. Thidiazuron-induced abnormalities in plant tissue cultures. Plant Cell Rep. 37:1451-1470. https://doi.org/10.1007/s00299-018-2326-1
  8. Fang, D.Q. and M.L. Roose. 1997. Identification of closely related citrus cultivars with inter-simple sequence markers. Theor. Appl. Genet. 95:408-417. https://doi.org/10.1007/s001220050577
  9. Fatiha, B., S.-R. Carolina and M. Carmen. 2019. Somaclonal variation in olive (Olea europaea L.) plants regenerated via somatic embryogenesis: Influence of genotype and culture age on genetic stability. Sci. Hortic. 251:260-266. https://doi.org/10.1016/j.scienta.2019.03.010
  10. Garcia, C., A.-A.F. de Almeida, M. Costa, D. Britto, R. Valle, S. Royaert and J.-P. Marelli. 2019. Abnormalities in somatic embryogenesis caused by 2,4-D: an overview. Plant Cell Tiss. Organ Cult. 137:193-212. https://doi.org/10.1007/s11240-019-01569-8
  11. Godwin, I.D., E.A.B. Aiken and L.W. Smith. 1997. Application of inter simple sequence repeat (ISSR) markers to plant genetics. Electrophoresis 18:1524-1528. https://doi.org/10.1002/elps.1150180906
  12. Goh, E.J., E.S. Seong, J.H. Yoo, H.Y. Kil, J.G. Lee, I.S. Hwang, N.-j. Kim, B.K. Ghimire, M.J. Kim, J.K. Lee, J.D. Lim, N.Y. Kim and C.Y. Yu. 2011. Effect of plant growth regulators and media on regeneration of Sorghum bicolor (L.) Moench. Korean J. Plant Res. 24(2):168-173. https://doi.org/10.7732/kjpr.2011.24.2.168
  13. http://www.missouribotanicalgarden.org/PlantFinder/PlantFinderDetails.aspx?kempercode=d520
  14. Hwang, K.S., S.T. Joo, S.S. Ha, K.D. Kim and Y.K. Joo. 2018. Seedling plug and cutting method for multipropagation of ornamental Miscanthus Spp. Weed. Turf. Dci. 7(3):275-282.
  15. Jin, S., R. Mushke, H. Zhu, L. Tu, Z. Lin, Y. Zhang and X. Zhang. 2008. Detection of somaclonal variation of cotton (Gossypium hirsutum) using cytogenetics, flow cytometry and molecular markers. Plant Cell Rep. 27:1303-1316. https://doi.org/10.1007/s00299-008-0557-2
  16. Kang, I.-J., V. Kantayos, J.Y. Choi, Y.J. Lee and C.-H. Bae. 2019. In vitro multiple propagation of woolly grass (Imperata cylindrica 'Rubra'). Proceedings of the Spring Conference of the Plant Resources Society of Korea. April 25-26, 2019. Yeosu, Korea. p. 79 (in Korean).
  17. Kang, I.-J., Y.J. Lee and C.-H. Bae. 2020. In vitro plant regeneration and genetic stability of the regenerants in woolly grass (Imperata cylindrica 'Rubra'). Proceedings of the Spring Conference of the Plant Resources Society of Korea. Autumn 14-15, 2020. Jecheon, Korea. p. 37 (in Korean).
  18. Kim, M.D., H. Jin, E.-J. Park, S.-Y. Kwon, H.-S. Lee and S.-S. Kwak. 2005. Plant regeneration through somatic embryogenesis of Leymus chinensis Trin. Korean J. Plant Biotechnol. 32(1):51-55. https://doi.org/10.5010/JPB.2005.32.1.051
  19. Kusano, M., K. Tohyama, C.-H. Bae, K.-Z, Riu and H.-Y. Lee. 2003. Plant regeneration and transformation of kentucky bluegrass (Poa pratensis L.) via the plant tissue culture. Korean J. Plant Biotech. 30(2):115-121. https://doi.org/10.5010/JPB.2003.30.2.115
  20. Lee, T.B. Illustrated Flora of Korea. 2003. Hyangmoonsa Publishing Com., Seoul, Korea (in Korean).
  21. Liu, F., L.-L. Huang, Y.-L. Li, P. Reinhoud, M.A. Jongsma and C.-Y. Wang. 2011. Shoot organogenesis in leaf explants of Hydrangea macrophylla 'Hyd1' and assessing genetic stability of regenerants using ISSR markers. Plant Cell Tiss. Organ Cult. 104:111-117. https://doi.org/10.1007/s11240-010-9797-2
  22. Mo, X.Y., T. Long, Z. Liu, H. Lin, X.Z. Liu, Y.M. Yang and H.Y. Zhang. 2009. AFLP analysis of somaclonal variations in Eucalyptus globulus. Biol. Plant. 53(4):741-744. https://doi.org/10.1007/s10535-009-0135-7
  23. Moon, Y.-H., J.-E. Lee, G.-D. Yu, Y.-L. Cha, Y.-S. Song and K.-B. Lee. 2016. Quality and combustion characteristics of miscanthus pellet for bioenergy. Clean Technol. 22(4):286-291. https://doi.org/10.7464/ksct.2016.22.4.286
  24. Moon, Y.-H., K.-S. Kim, J.-E. Lee, D.-E. Kwon, Y.-K. Kang and Y.-L. Cha. 2019. Single crossing conditions of Miscanthus sacchariflorus and Miscanthus sinensis to breed Miscanthus x giganteus cultivar. Korean J. Plant Res. 32(5):509-518. https://doi.org/10.7732/KJPR.2019.32.5.509
  25. Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  26. Ramakrishnan, M., S.A. Ceasar, V. Duraipandiyan and S. Ignacimuthu. 2014. Efficient plant regeneration from shoot apex explants of maize (Zea mays) and analysis of genetic fidelity of regenerated plants by ISSR markers. Plant Cell Tiss. Organ Cult. 119:183-196. https://doi.org/10.1007/s11240-014-0525-1
  27. Ray, T., I. Dutta, P. Saha, S. Das and S.C. Roy. 2006. Genetic stability of three economically important micropropagated banana (Musa spp.) cultivars of lower Indo-Gangetic plains, as assessed by RAPD and ISSR markers. Plant Cell Tiss. Organ Cult. 85:11-21. https://doi.org/10.1007/s11240-005-9044-4
  28. Ryu, J.H., E.H. Kim, H.S. So, M.Y. Chung, W.S. Song and C.H. Bae. 2013. Plant regeneration and genetic diversity of regenerants from seed-derived callus of reed (Phragmites communis Trinius). Korean J. Plant Res. 26(2):320-327 (in Korean). https://doi.org/10.7732/kjpr.2013.26.2.320
  29. Ryu, J.H., H.Y. Lee and C.H. Bae. 2011. Variation analysis of long-term in vitro cultured Cymbidium goeringii Lindley and Cymbidium kanran Makino. Korean J. Plant Res. 24:139-149 (in Korean). https://doi.org/10.7732/kjpr.2011.24.2.139
  30. Shigeki, Y., Y. Kutsuna, K. Yamamoto, H. Isobe, T. Abe, M. Hashiguchi and R. Akash. 2009. Establishment of multiple-shoot formation from apical meristems and dwarf strain induced by heavy ion beam irradiation in cogongrass (Imperata cylindrica L.). Jpn. J. Grassl. Sci. 34:333-335 (in Japanese).
  31. Umami, N., T. Gondo, H. Tanaka, M.M. Rahman and R. Akashi. 2012. Efficient nursery plant production of dwarf cogongrass (Imperata cylindrica L.) through mass propagation in liquid culture. Grassl. Sci. 58:201-207. https://doi.org/10.1111/grs.12001
  32. Vijayan, A., P.P. Pillai, A.S. Hemanthakumar and P.N. Krishnan. 2015. Improve in vitro propagation, genetic stability and analysis of corosolic acid synthesis in regenerants of Lagerstroemia speciosa (L.) Pers. by HPLC and gene expression profiles. Plant Cell Tiss. Organ Cult. 120:1209-1214. https://doi.org/10.1007/s11240-014-0665-3
  33. Yoo, J.H., E.S. Seong, J.G. Lee, N.J. Kim, I.S. Hwang, H.Y. Kim, B.K. Ghimire, J.D. Lim, K. Heo and C.Y. Yu. 2012. Morphological characteristics of collected Miscanthus spp. for bio-energy crop. Kor. J. Breed. Sci. 44(2):121-126.
  34. Yu, G.-D., Y.-H. Jang, J.-I. Kim, J.-E. Lee, G.H. An, Y.-H. Moon, Y.-L. Cha, I.-H. Choi, J.W. Ahn, B.-C. Koo and K.-B. Lee. 2015. Plant regeneration of M. sacchariflorus cv. Wooram using immature inflorescence. Korean J. Breed. Sci. 47(4):376-383. https://doi.org/10.9787/KJBS.2015.47.4.376
  35. Zietkiewicz, E., A. Rafalski and D. Labuda. 1994. Genome fingerprinting by SSR anchored PCR amplification. Genomics 20:176-183. https://doi.org/10.1006/geno.1994.1151