• Title/Summary/Keyword: shoots production

Search Result 215, Processing Time 0.025 seconds

Development of Technology for Intensive Production of High-Quality Rosemary Shoots (고품질 로즈마리 어린 순 생산을 위한 적정 삽수 길이 및 삽목 시기 구명)

  • Myeong-Suk Kim;Se-Hyun Gi;Jung-Seob Moon;Gue-Saeng Yeom;Song-Hee Ahn;Dong-Chun Jung
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.43-43
    • /
    • 2021
  • 로즈마리(Rosmarinus officinalis)는 지중해 지역이 원산이고 꿀풀과에 속하는 다년생 식물로 자생지에서는 식물의 크기가 2m까지 자라는 관목성 식물이다. 식용, 약용, 미용, 향료뿐 아니라 관상용으로도 널리 이용되고 있고 특히 향이 좋아 세계 로즈마리 추출물 시장은 연평균 4.8%씩 증가하여 2027년에는 10억 달러를 넘을 것으로 예측된다. 우리나라도 소비 트렌드 변화에 따른 이용성 확대로 신선허브의 수요가 증가하고 있으나 아직은 허브 식물원료의 대부분을 수입에 의존하고 있고, 로즈마리 역시 식물원료뿐 아니라 가공품까지 외국에서 수입하여 사용하는 실정이다. 2018년 로즈마리 수입량은 신선상태 978kg, 건조상태 23,404kg으로 높은 수입의존에 따른 가격 상승과 긴 유통기간에 의한 품질 저하 등의 문제가 발생하고 있다. 본 연구는 로즈마리 어린 순 재배 적정 삽수 길이를 설정하고 어린 순 생산 가능 기간을 구명하여 추후에 고품질 로즈마리 어린 순 집약생산을 위한 다단재배기술을 확립하고자 수행되었다. 삽수 길이는 5, 10, 15cm로 하였고, 삽목 시기는 4월 하순 ~ 8월 하순까지 30일 간격으로 5회 실시하였다. 적정 삽수 길이 설정 실험에서는 15cm 삽수 발근률이 85.6%로 가장 높았으며 신초 출현시기는 5월 26일, 어린 순 생산시기는 6월 23일로 가장 빨랐고 수확시까지 소요일수는 56일로 가장 짧았다. 기대수량 또한 728g/m2로 가장 높았다. 로즈마리 어린 순 생산 가능 기간 구명 실험에서는 4월 28일 삽목시 발근율이 85.6%로 가장 높았고 육묘기간은 28일 어린 순 생산까지 소요일수는 56일로 가장 짧았다. 삽목 시기별 어린 순 품질 및 생산량은 4월 28일 삽목시 품질이 좋았으며 기대수량 또한 728g/m2로 가장 높았다. 결과적으로 상품성 있는 어린순 생산에 적합한 삽수 길이는 15cm, 삽목 시기는 4월 하순 경에 했을 때, 로즈마리의 생육상태, 수확까지의 기간, 어린 순 생산량 등 종합적인 면에서 가장 우수한 값을 얻을 수 있었다.

  • PDF

Agrobacterium-mediated transformation produces transgenic oilseed rape with a high-yield trait (아그로박테리움 형질전환법을 이용한 수량증대 유채 식물체 개발)

  • Jong Bo Kim
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.63-69
    • /
    • 2023
  • This study includes the transformation of genes such as ORE7, the increase of gene expression, and the use of the bar gene as a selectable marker that shows herbicide resistance with Agrobacterium tumefaciens using hypocotyls from the oilseed rape "Youngsan" cultivar. To establish an Agrobacterium transformation system for the production of oilseed rape with a high-yield trait, infection time and co-cultivation period with Agrobacterium were tested. Therefore, when hypocotyls from the oilseed rape "Youngsan" cultivar were infected with Agrobacterium for 20 min and co-cultivated for 3 days, approximately 32-36 putatively transformed hypocotyls with shoots including roots survived from 100 inoculated hypocotyls after 4 weeks of transformation on a selection medium containing 20 mg/L of phosphinothricin (PPT) as a selectable agent. Additionally, a PCR assay was performed to confirm the insertion of target genes and showed the presence of the ORE7 gene as a high-yielding trait and the bar gene as a selectable marker. Treatment with 0.5% (v/v) Basta solution as a selectable agent for 6 days with leaves from transformed oilseed rape expressed the bar gene. Therefore, this study can contribute to the development of special oilseed rapes containing agriculturally useful traits such as herbicide resistance, drought tolerance, high yielding traits, and high oleic acid content.

Protoplast Fusion of Nicotiana glauca and Solanum tuberosum Using Selectable Marker Genes (표식유전자를 이용한 담배와 감자의 원형질체 융합)

  • Park, Tae-Eun;Chung, Hae-Joun
    • The Journal of Natural Sciences
    • /
    • v.4
    • /
    • pp.103-142
    • /
    • 1991
  • These studies were carried out to select somatic hybrid using selectable marker genes of Nicotiana glauca transformed by NPTII gene and Solanum tuberosum transformed by T- DNA, and to study characteristics of transformant. The results are summarized as follows. 1. Crown gall tumors and hairy roots were formed on potato tuber disc infected by A. tumefaciens Ach5 and A. rhizogenes ATCC15834. These tumors and roots could be grown on the phytohormone free media. 2. Callus formation from hairy root was prompted on the medium containing 2, 4 D 2mg/I with casein hydrolysate lg/l. 3. The survival ratio of crown gall tumor callus derived from potato increased on the medium containing the activated charcoal 0. 5-2. 0mg/I because of the preventions on the other hand, hairy roots were necrosis on the same medium. 4. Callus derived from hairy root were excellently grown for a short time by suspension culture on liquid medium containing 2, 4-D 2mg/I and casein hydrolysate lg/l. 5. The binary vector pGA643 was mobilized from E. coli MC1000 into wild type Agrobacteriurn tumefaciens Ach5, A. tumefaciens $A_4T$ and disarmed A. tuniefaciens LBA4404 using a triparental mating method with E. ccli HB1O1/pRK2013. Transconjugants were obtained on the minimal media containing tetracycline and kanamycin. pGA643 vectors were confirmed by electrophoresis on 0.7% agarose gel. 6. Kanamycin resistant calli were selected on the media supplemented with 2, 4-D 0.5mg/1 and kanamycin $100\mug$/ml after co- cultivating with tobacco stem explants and A. tumefaciens LBA4404/pGA643, and selected calli propagated on the same medium. 7. The multiple shoots were regenerated from kanamycin resistant calli on the MS medium containing BA 2mg/l. 8. Leaf segments of transformed shoot were able to grow vigorusly on the medium supplemented with high concentration of kanamycin $1000\mug$/ml. 9. Kanamycin resistant shoots were rooting and elongated on medium containing kanamycin $100\mug$/ml, but normal shoot were not. 10. For the production of protoplast from potato calli transformed by T-DNA and mesophyll tissue transformed by NPTII gene, the former was isolated in the enzyme mixture of 2.0% celluase Onozuka R-10, 1.0% dricelase, 1.0% macerozyme. and 0.5M mannitol, the latter was isolated in the enzyme mixture 1.0% Celluase Onozuka R-10, 0.3% macerozyme, and 0.7M mannitol. 11. The optimal concentrationn of mannitol in the enzyme mixture for high protoplast yield was 0.8M at both transformed tobacco mesophyll and potato callus. The viabilities of protoplast were shown above 90%, respectively. 12. Both tobacco mesophyll and potato callus protoplasts were fused by using PEG solution. Cell walls were regenerated on hormone free media supplemented with kanamycin after 5 days, and colonies were observed after 4 weeks culture.

  • PDF

The Effect of Renewal Topworking on Early Y Shape Tree Formation and Yields in Peach Trees (고접갱신이 복숭아 Y자 수형 조기 구성 및 생산성에 미치는 영향)

  • Yoon, Ik Koo;Yun, Seok Kyu;Jun, Ji Hae;Nam, Eun Young;Kwon, Jung Hyun;Bae, Hae Jin;Chung, Kyeong Ho;Moon, Byung Woo
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.366-370
    • /
    • 2013
  • The effects of the early tree shapes with renewal by top-working on Y-shaped peach tree, and the influence on the maintaining fruit quantity with gradual renewal of interstock cultivar were determined. In the comparison of the places of top-working tree, top working tree on the inside of the main branch of interstock cultivar had higher graft union rate and branch growth than those of top working tree on the outside. Tree width, basal diameter of shoot, and number of bearing shoots were smaller in top working tree than in replanted tree. Although labor time was not different to control top working tree and replanted tree, labor time was much required to manage top working tree with interstock cultivar. Accumulated fruit production was 2,384 kg/10a in top working tree and 2,025 kg/10a in replanted tree for three years. However, top working tree had no loss of fruits because interstock cultivar of top-working tree had 3,727 kg/10a of fruits. No variation on fruit quality was observed between top working tree and replanting tree. In terms of economic value of top-working tree, labor to manage interstock cultivar, fertilizer price, fruit bagging, and grading and packing price increased. However, fruit production increased, and price of seedling, rental equipment, pulling-out trees, and repairing supporting system decreased. Therefore, gradual renewal of topworking tree has effects on the maintaining fruit quantity, supplementation on fruit loss, and renewal cultivar.

Influence of Soil Salinity on the Growth Response and Inorganic Nutrient Content of a Millet Cultivar (토양염농도에 따른 기장의 생장반응 및 무기양분함량 변화)

  • Kim, Sun;Ryu, Jin-Hee;Kim, Young-Joo;Jeong, Jae-Hyeok;Lee, Su-Hwan;Oh, Yang-Yeol;Kim, Young-Doo;Kim, Jae-Hyen
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.2
    • /
    • pp.113-118
    • /
    • 2016
  • This experiment was conducted to identify the variations in inorganic nutrients and plant growth in millet (Panicum miliaceum L.) due to soil salinity. The soil series was Munpo and soil texture was silt loam. The experimental soil was amended so that the soil had salinities of $0.8dS\;m^{-1}$, $1.6dS\;m^{-1}$, $3.2dS\;m^{-1}$ and $4.8dS\;m^{-1}$. Millet was transplanted 15 days after sowing. As soil salinity increased, the degree of reduced growth was in the order of seed production > root dry matter > plant dry matter > culm length > tiller number > stem thickness > Panicle length. Seed production was decreased to 18.9% in soil salinity of $1.6dS\;m^{-1}$, 36.9% in of $3.2dS\;m^{-1}$, and 50.7% in EC of $4.8dS\;m^{-1}$. Root dry matter decreased to 35.8% in EC of $3.2dS\;m^{-1}$, and to 40.5% in EC of $4.8dS\;m^{-1}$. As soil salinity increased, Total nitrogen content increased in all aboveground parts, roots and seeds. However, There was no difference in CaO, $P_2O_5$, $K_2O$ and, MgO in soils of different salinity. On the other hand, $Na_2O$ content was higher in the order roots> shoots> seed, and in the case of roots, $Na_2O$ content increased to 1.02% in soil salinity of $4.8dS\;m^{-1}$. However, up to soil salinity of $1.6dS\;m^{-1}$, the $Na_2O$ content of the seed was similar to that in plant grown in the Control conditions($0.8dS\;m^{-1}$). In conclusion, taking into consideration economic factors, millet could be cultivated in soil with salinities of up to approximately $1.6dS\;m^{-1}$, and seed produced from reclaimedland would be suitable for human consumption.

The Behaviors of Phosphorus-32 and Ptoassium-42 under the Control of Thermoperiod and Potassium Level (가리(加里)와 온도주기성(溫度週期性)이 고구마 생육(生育) 및 인(燐)-32, 가리(加里)-42 동태(動態)에 미치는 영향(影響))

  • Kim, Y.C.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.1 no.1
    • /
    • pp.89-115
    • /
    • 1968
  • 1. The experiment was carried out for investigating the interaction between potassium nutrition and thermoperiod (as an environment regulating factor) in relation to behaviors of several nutrients including phosphorus-32 and Potassium-42 in IPOMOEA BATAS. 2. To obtain same condition to trace the behaviors of phosphorus and potassum-42 they were simultaneously incorporated to roots. The determination of each CPM by counting twice with adequate interval and calculating true CPM of each isotope according to different half-life, was carried out with satisfactory. 3. Some specific symptoms i.e, chlorosis and withering of growing point under the condition of lower potassium level were found and was accelerated by the low night temperature. 4. A manganese shortage in growing point of the lower potassium level was found by activiation analysis and very low distribution ratio of phosphorus-32 and potassium-42 in the growing point of the lower potassium level was manifested, though the contents of nitrogen, phosphorus, potassium, sodium and magnesium were not in great difference. 5. In addition to the low water content with appearence of "hard", shorterning internode and lower ratio of roots to shoot as well as the symptoms of potassium deficiency such as brown spot in leaf blade and necrosis of leaf margin were appeared at later stage of experiment at the lower potassium level. 6. Very stimulating vegetative growth, e.g, large plant length, leaf expansion, increasing node number and fresh weight as well as high ratio of roots to shoot, high water content was resulted in the condition of higher potassium level. 7. A specific interaction between higher potassium level and thermoperiod was found, that is, the largest tuber production and the largest ratio of roots to shoot were resulted in the combined condition of higher potassium level and constant temperature while the largest plant length, fresh weight etc. i.e. the most stimulative vegetative growth was resulted in the combined condition of higher potassium level and low night temperature. 8. Comparatively low water content in the former condition of stimulative tuber production was resulted(especially at the tuber thickening stage), while high water content in the latter condition of stimulative vegetation was resulted though the higher potassium level made generally high water contents. 9. The nitrogen contents of soluble and insoluble did not make distinct difference between the lower and higher potassium level. 10. Though the phosphorus contents were not distinctly different by the potassium level, the lower potassium level made the percentage of phosphorus increased at tuber forming stage accumulating more phosphorus in roots, while the higher potassium level decreased percentage of phosphorus at that stage. 11. The higher potassium level made distinctly high potassium contents than the lower potassium level and increased contents at the tuber forming stage through both conditions. 12. The sodium contents were low in the condition of higher potassium level than the lower potassium level and decreased at tuber forming stage in both conditions, on the contary of potassium. 13. Except the noticeable deficeney of manganese in the growing point of the lower potassium level, mangense and magnesium contents in other organs did not make distinct difference according to the potassium level. 14. Generally more uptake and large absorption rate of phosphorus-32 and potassium-42 were resulted at the higher potassium level, and the most uptake, and the largest absorption rate of phosphorus and potassium-42 (especially potassium-42 at tuber forming stage) were resulted in the condition of higher potassium level and constant temperature which made the highest tuber production. 15. The higher potassium level stimulated the translocation of phoshorus-32 and potassium-42 from roots to shoots while the lower potassium level suppressed or blocked the translocation. 16. Therefore, very large distribution rate of $p^{32}$, $K^{42}$ in shoot, especially, in growing point, compared with roots was resulted in the higher potassium level. 17. The lower potassium level suppressed the translocation of phosporus-32 from roots to shoot more than that of potassium-42. 18. The uptake of potassium-42 and translocation in IPOMOEA BATATAS were more vivid than phosphorus-32. 19. A specific interaction between potassium nutrition and thermoperiod which resulted the largest tuber production etc. was discussed in relation to behaviors of minerals and potasium-42 etc. 20. Also, the specific effect of the lower and higher potassium level on the growth pattern of IPOMOEA BATATAS were discussed in relation to behaviors of minerals and isotopes. 21. An emphasize on the significance of the higher potassium level as well as the interaction with the regulating factor and problem of potassium level (gradient) for crops product ion were discussed from the point of dynamical and variable function of potassium.

  • PDF

Fertilization Effects on Allometric Equations and Biomass in a Moso Bamboo (Phllostachys pubescens) Stand (맹종죽 임분에 시비가 상대생장식 및 바이오매스에 미치는 영향)

  • Jo, Chang-Gyu;Baek, Gyeongwon;Park, Seong-Wan;Yoo, Byung Oh;Jung, Su Young;Lee, Kwang Soo;Kim, Choonsig
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.4
    • /
    • pp.380-387
    • /
    • 2017
  • This study was carried out to determine fertilization effects on allometric equations and biomass production in a Moso bamboo (Phllostachys pubescens) stand of the Gajwa National Experimental Forests, Jinju, Korea. The study site was fertilized for approximately 30 years to produce edible bamboo shoots. Total 20 bamboos (10 fertilized and 10 unfertilized) were cut to develop allometric equations and to estimate biomass accumulation of each bamboo component. Allometric equations of each bamboo component in the fertilized and unfertilized plots were significant (P < 0.05) with diameter at 20 cm from ground ($D_{20}$), diameter at breast height (DBH), culm height (H), and $DBH^2{\cdot}H$. Aboveground biomass estimated by the allometric equations (DBH) was significantly higher in the unfertilized plots ($106.38Mg\;ha^{-1}$) in culm density of $6,833culm\;ha^{-1}$ than in the fertilized ($57.68Mg\;ha^{-1}$) plots in culm density of $4,633culm\;ha^{-1}$. The proportion of each biomass component was culm (79%), followed by branches (14%) and leaf (7%) in the fertilized plots, whereas it was culm (81%), followed by branches (13%), and leaf (6%) in the unfertilized plots. The results indicate that aboveground biomass accumulation in a Phllostachys pubescens stand was little affected by fertilizer application because of the difference of culm density.

Influence of Soil Texture and Bulk Density on Root Growth Characteristics and Nutrient Influx Rate of Soybean Plant (토성(土性)과 용적밀도(容積密度)가 대두(大豆)의 뿌리 생장특성(生長特性)과 양분흡수기능(養分吸收機能)에 미치는 영향(影響))

  • Jung, Yeong-Sang;Lim, Hyung-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.3
    • /
    • pp.221-227
    • /
    • 1989
  • This study was conducted to understand the influence of soil compaction on root growth and nutrient uptake characteristics of the soybean roots grown in two soils with different texture. Tap root elongation was measured on young seedling grown in cores compacted to different bulk densities of 1.2, 1.4 and $1.6/cm^3$ with different soil water retention in laboratory. The soil used were Samgag sandy loam and Baegsan loam soils. The wet and dry weight, total length, average radius and total surface area of roots were measured on soybean plants grown in 1/5000 a Wagner pots compacted to different bulk density of 1.2 and $1.4g/cm^3$. The nutrient uptake of soybean shoot was measured and evaluated with the unit surface area of roots at the 7th, 17th and 27th days after germination. The results were as follows: 1. The tap root elongation rate was faster in the loam soil with low bulk density than in the sandy loam soil with high bulk density. The elongation rates were remarkedly decreased when soil water was lower than the retention of 4 bars in loam soil and that of 1 bars in sandy loam soil. 2. Tap root elongation rate sharply decreased as increased soil strength higher than $2kgf/cm^2$ measured by ELE penetrometer showing curvillinear regression. However, it was low regardless of soil strength when soil water retention was 10 bars in sandy loam soil. 3. From the pot experiment, the total length of roots were longer in loam soil than in sandy loam soil and was longer in the soils with lower bulk density. The average radius of fine roots grown in sandy loam soil was larger than that grown in loam soil. The total surface area of roots was greater in the loam soil with low bulk density than in the sandy loam soil with high bulk density as the total length of roots. 4. The amounts of nutrient uptake by soybean shoots were greater in loam soil primarily due to more production of dry matter than in sandy loam soil. The nitrogen influx rates through the unit surface area were 597 to $753nmoles/day-cm^2$ in loam soil and 222 to $365nmoles/day\;cm^2$ in sandy loam soilshowing higher value in higher bulk density. The potasium influx rates were 99 to $175nmoles/day-cm^2$, and those of phosphate were 26 to $46nmoles/day\;cm^2$. Those of Ca and Mg were 175 to 246 and 163 to $205nmoles/day\;cm^2$. The difference in nutrient influx rates between bulk densities of these elements were lower than that of nitrogen.

  • PDF

Effect of Peatmoss-Based Organic Material Mixtures on Soil pH, Growth and Fruit Quality of Highbush Blueberry(Vaccinium corymbosum L.) Plants (하이부시 블루베리 정식 시 유기물 조성이 토양 pH, 생육 및 과실 품질에 미치는 영향)

  • Kim, EunJu;Kim, Hyunggook;Guak, Sunghee
    • Journal of Bio-Environment Control
    • /
    • v.26 no.1
    • /
    • pp.43-48
    • /
    • 2017
  • This experiment was conducted to test the suitability of various organic materials in order to reduce the use dependence of peatmoss as a soil pH regulator and to examine the effect of soil organic matter supply. A 2-year old northern-highbush blueberry (Vaccinium corymbosum L.) 'Duke' plants were planted in the field at $2.0m{\times}2.5m$ spacing in spring. Before planting, organic materials were incorporated into the soil including the planting hole at 20 liter per plant, as the following mixtures: peatmoss only (20 L), peatmoss (10 L) + pine needle (10 L, PN), peatmoss (10 L) + rice hull (10 L, RH), and peatmoss (10 L) + sawdust (10 L, SD). The pH of organic materials was lowest in peatmoss (pH 4.3), followed by PN (pH 4.8), SD (pH 5.7) and RH (pH 7.8). Soil pH measured right after planting ranged from 5.3 to 5.9 and was lower in PM only and PM + PN than PM + RH and SD treatments. In the third year, the pH lowered to the range of 4.2 to 4.5, with PM and PM + PN still maintaining lower values. The early growth was good in the mixed treatment of PM and PN, and the plant height and width and the number of new shoots were good in the PM treatment. Soil water content was maintained highest in PM + PN, followed by PM, PM + SD and PM + RH. Vegetative growth was maintained better in PM and PM + PN, and the number of flower cluster and yield were also slightly higher in those treatments while mean fruit weight was similar among all treatments. Fruit quality indices such as total soluble solids, titratable acidity and firmness were not affected.

Effects of Crop Loads on Vine Growth and Fruit Quality of 'Jinok' Grape in Unheated Plastic House (포도 '진옥' 품종의 무가온 하우스 재배시 착과량이 수체생육 및 과실품질에 미치는 영향)

  • Cheon, Mi Geon;Kim, Yeong Bong;Kim, Seong Ran;Lee, Kang Mo;Hong, Gwang Pyo;Kim, Jin Gook
    • Journal of Bio-Environment Control
    • /
    • v.24 no.4
    • /
    • pp.296-300
    • /
    • 2015
  • This study was conducted to investigate optimal crop loads of 'Jinok' grape for unheated plastic house culture. The crop loads of 'Jinok' grapes were managed to be 1.3, 1.8, 2.2, 2.4, and 2.6t per 10a from 2012 to 2014. We measured vine growth and berry qualities. Crop loads were not significantly affected on plant height, trunk diameter, shoot length, and the internode length of 'Jinok'. However, the maturation of berries was delayed when the crop load was higher. And the harvest date was earlier about three weeks in an unheated plastic house compared to in an open field. The average berry weight was decreased by the higher crop load although higher crop loads made higher yields showing the lowest weight at 342g with the treatment of 2.6t per 10a and the highest weight at 363g with the treatment of 1.3t per 10a. Also, the soluble solids content showed a tendency that higher crop loads brought to lower degree Brix. The contents of P, K, Ca, and Mg in grape leaves and shoots were not significantly different by crop loads. To sum up, when crop loads were under the 2.4t per 10a, the berries were harvested as a marketable fruit having $15^{\circ}Brix$ in the cultivar 'Jinok' grape. This result could help to increase grower's benefit having improved quality of fruit for the sustainable production by the established cultivation techniques for the newly developed cultivar 'Jinok'.