DOI QR코드

DOI QR Code

Influence of Soil Salinity on the Growth Response and Inorganic Nutrient Content of a Millet Cultivar

토양염농도에 따른 기장의 생장반응 및 무기양분함량 변화

  • Received : 2016.02.12
  • Accepted : 2016.06.02
  • Published : 2016.06.30

Abstract

This experiment was conducted to identify the variations in inorganic nutrients and plant growth in millet (Panicum miliaceum L.) due to soil salinity. The soil series was Munpo and soil texture was silt loam. The experimental soil was amended so that the soil had salinities of $0.8dS\;m^{-1}$, $1.6dS\;m^{-1}$, $3.2dS\;m^{-1}$ and $4.8dS\;m^{-1}$. Millet was transplanted 15 days after sowing. As soil salinity increased, the degree of reduced growth was in the order of seed production > root dry matter > plant dry matter > culm length > tiller number > stem thickness > Panicle length. Seed production was decreased to 18.9% in soil salinity of $1.6dS\;m^{-1}$, 36.9% in of $3.2dS\;m^{-1}$, and 50.7% in EC of $4.8dS\;m^{-1}$. Root dry matter decreased to 35.8% in EC of $3.2dS\;m^{-1}$, and to 40.5% in EC of $4.8dS\;m^{-1}$. As soil salinity increased, Total nitrogen content increased in all aboveground parts, roots and seeds. However, There was no difference in CaO, $P_2O_5$, $K_2O$ and, MgO in soils of different salinity. On the other hand, $Na_2O$ content was higher in the order roots> shoots> seed, and in the case of roots, $Na_2O$ content increased to 1.02% in soil salinity of $4.8dS\;m^{-1}$. However, up to soil salinity of $1.6dS\;m^{-1}$, the $Na_2O$ content of the seed was similar to that in plant grown in the Control conditions($0.8dS\;m^{-1}$). In conclusion, taking into consideration economic factors, millet could be cultivated in soil with salinities of up to approximately $1.6dS\;m^{-1}$, and seed produced from reclaimedland would be suitable for human consumption.

기장의(Panicum miliaceum L.)의 간척지 재배가능성을 확인하기 위해 토양염농도에 따른 기장의 생육 및 개체내 무기영양분의 변이를 새만금 간척지의 대표토양인 문포통토양(미양질)을 이용하여 시험한 결과는 다음과 같다. 토양염농도 증가시 생육감소정도는 종실> 뿌리건물중> 줄기건물중> 간장> 분얼수> 줄기두께> 이삭길이 순을 나타냈다. 종실 결실량은 Control 토양에서 재배된 개체에 비해 토양염농도 $1.6dS\;m^{-1}$에서 재배된 개체의 결실량이 18.9%가 감소되었고 $3.2dS\;m^{-1}$에서는 46.9%, $4.8dS\;m^{-1}$에서는 87.9%가 감소되었다. 뿌리건물중은 토양염농도 $3.2dS\;m^{-1}$에서는 35.8%가 감소되었으며, $4.8dS\;m^{-1}$에서는 60.5% 감소되었다. 식물체 부위별 무기양분 함량은, T-N은 염농도가 증가됐을 때 지상부와 뿌리 종실 모두에서 함량이 증가되었으나 양이온 중 CaO, $P_2O_5$, $K_2O$, MgO는 재배토양의 염농도에 따른 차이를 보이지 않았다. $Na_2O$ 축적량은 뿌리>지상부>종실 순으로 높았으며, 뿌리의 경우 토양염농도 $4.8dS\;m^{-1}$에서 재배된 $Na_2O$함량은 1.02%까지 높아졌다. 종실의 $Na_2O$ 함량은 $1.6dS\;m^{-1}$까지는 Control ($0.8dS\;m^{-1}$)에서 재배된 것과 비슷했다. 이 시험이 결과 경제성을 고려한 기장 재배한계 염농도는 $1.6dS\;m^{-1}$ 내외로 생각되며, 간척지 토양에서 생산된 종실도 식용이 가능함을 제시하였다.

Keywords

References

  1. Bresler, E., B. L. McNeal, and D. L Carter. 1982. Saline and Sodic Soils. Spring-Verlag Berlin Heidelberg New York. pp. 167-171.
  2. Chon, S. U. and J. H. Park. 2003. Parameter on Physiological Respons of Soybean (Glycine max Merr.) to Salinity. Korean J. Environment Agriculture. 22(1) : 185-191. https://doi.org/10.5338/KJEA.2003.22.3.185
  3. NAAS. 2010. Methodes of Soil Analysis. National Academy of Agricultural Science. pp. 13-151.
  4. NICS. 2009. Agriculture status and Land commentary in korean Reclaimed, National Institute of Crop Science. p. 146.
  5. NICS. 2015. The major upland crop varieties handbook. National Institute of Crop Science. pp. 146-147.
  6. Kim, S., W. Y. Choi, J. H. Jeong, and K. B. Lee. 2014. Physiological response of four corn cultivars to soil salinity. Korean J. Crop Sci. 59(3) : 293-298. https://doi.org/10.7740/kjcs.2014.59.3.293
  7. Kim, S., W. Y. Choi, C. H. Yang, and T. K. Kim. 2013. Study on growth response of upland crop as different soil salinity in newly reclaimed land. National Institute of Crop Science Research Report. 2013 : 629-641.
  8. Kwak, K. S., S. J. Lim, S. A. Kim, S. C. Park, and M. S. Lee. 2004. Antioxidative and antimutagenic effect of korean Buckwheat, Sorghum, Millet and Job's tears. J. Korean Food Sci. Nutr. 33(6) : 821-929. https://doi.org/10.3746/jkfn.2004.33.5.821
  9. Lee, S. H., B. D. Hong, Y. M. An, and H. M. Ro. 2003. Relation between growth condition of six upland crop and soil salinity in reclaimed land. Korean J. Soil Fert. 36(2) : 66-71.
  10. Lee, S. H., S. H. Yoo, S. I. Seol, Y. An, Y. S Jung, and S. M. Lee. 2000. Assesment of salt damage for upland-crop in Dae-ho reclaimed soil. Korean Journal of Environment Agriculture. 19(4) : 358-363.
  11. Mass, E. V. and G. J. Hoffman. 1977. Crop solt tolerance-current assessment. J Irrig Drain Div Proc Am Soc Civil Eng. 103 : 115-134.
  12. Munns, R. 2002. Comparative physiology of salt and water stress. Plant Cell Environ. 25 : 239-250. https://doi.org/10.1046/j.0016-8025.2001.00808.x
  13. Ryu, J. H., Y. J. Kim, S. H. Lee, Y. Y. Oh, Y. D. Kim, H. C. Hong, C. H. Yang, and S. L. Kim. 2015. Growth and yield characteristics of winter cereal forage crop affected by seeding rate in Saemangeum reclaimed land. Korean J. Int. Agric. 27(4) : 505-510. https://doi.org/10.12719/KSIA.2015.27.4.505
  14. Soon, J. G., J. K. Choi, and J. Y. Cho. 2009. Chemical properties of soil in the proposed horticultural complexes of Saemangeum reclaimed tideland. Journal of the korean society of agricultural engineers. 51(4) : 67-73. https://doi.org/10.5389/KSAE.2009.51.4.067

Cited by

  1. 간척지 수수 재배에서 토양염농도와 파종방법에 따른 입모 및 생육특성 vol.62, pp.3, 2016, https://doi.org/10.7740/kjcs.2017.62.3.233
  2. 간척지 적응성 잡곡 선발 및 간척지 재배 수수의 기능성 향상 효과 vol.64, pp.2, 2019, https://doi.org/10.7740/kjcs.2019.64.2.109
  3. Comparison of Salinity Tolerance Between Grain and Sweet Sorghum Germplasms [Sorghum Bicolor (L.) Moench] vol.52, pp.1, 2016, https://doi.org/10.9787/kjbs.2020.52.1.32
  4. 자동 수분 제어시스템을 이용한 간척지 케나프 재배시 하천수 및 액비 관개 효과 vol.66, pp.1, 2016, https://doi.org/10.7740/kjcs.2021.66.1.087