DOI QR코드

DOI QR Code

Agrobacterium-mediated transformation produces transgenic oilseed rape with a high-yield trait

아그로박테리움 형질전환법을 이용한 수량증대 유채 식물체 개발

  • Jong Bo Kim (Department of Biotechnology, College of Biomedical & Health Sciences, Glocal Campus. Konkuk university)
  • 김종보 (건국대학교 글로컬캠퍼스 의료생명대학 생명공학과)
  • Received : 2023.04.22
  • Accepted : 2023.04.24
  • Published : 2023.04.28

Abstract

This study includes the transformation of genes such as ORE7, the increase of gene expression, and the use of the bar gene as a selectable marker that shows herbicide resistance with Agrobacterium tumefaciens using hypocotyls from the oilseed rape "Youngsan" cultivar. To establish an Agrobacterium transformation system for the production of oilseed rape with a high-yield trait, infection time and co-cultivation period with Agrobacterium were tested. Therefore, when hypocotyls from the oilseed rape "Youngsan" cultivar were infected with Agrobacterium for 20 min and co-cultivated for 3 days, approximately 32-36 putatively transformed hypocotyls with shoots including roots survived from 100 inoculated hypocotyls after 4 weeks of transformation on a selection medium containing 20 mg/L of phosphinothricin (PPT) as a selectable agent. Additionally, a PCR assay was performed to confirm the insertion of target genes and showed the presence of the ORE7 gene as a high-yielding trait and the bar gene as a selectable marker. Treatment with 0.5% (v/v) Basta solution as a selectable agent for 6 days with leaves from transformed oilseed rape expressed the bar gene. Therefore, this study can contribute to the development of special oilseed rapes containing agriculturally useful traits such as herbicide resistance, drought tolerance, high yielding traits, and high oleic acid content.

본 연구는 유채(Brassica napus L.)의 배축을 이용하여 수량 증대 유전자인 ORE7 그리고 선발유전자로 제초제저항성을 나타내는 bar 유전자를 Agrobacterium 기법을 이용하여 형질전환 하였다. 효율적인 유채형질전환 기법을 확립하기 위해 한국 유채 '영산' 품종의 배축 절편체를 이용하여 Agrobacterium 접종 시, 20분간의 접종시간 그리고 3일간의 공동배양기간을 적용할 때 100개의 접종된 배축 절편체들로부터 약 32-36개 개체가 PPT (Phosphinothrixin) 20 mg/l 첨가된 선발배지에서 생존하여 높은 형질전환 효율을 보여주었다. 또한 본 연구에서 도입된 선발 및 생산성 증대 유전자 도입 여부를 확인하기 위해 PCR을 수행하여 도입여부를 확인하였다. 또한 생산성 증대 유전자 ORE 7 유전자와 같이 도입된 bar 유전자의 발현여부를 확인하기 위해 0.5% Basta 용액에 처리한 결과, 제초제저항성 형질이 발현됨을 확인하였다. 본 연구결과를 통해 향후 국내 유채품종을 대상으로 Agrobacterium을 이용하여 제초제 저항성, 건조저항성. 생산성 증대 형질 그리고 오일함량 증대 등의 유용형질 개량에 이용되리라 판단된다.

Keywords

Acknowledgement

이 논문은 건국대학교 2021년 KU 학술연구비 지원에 의한 논문임.

References

  1. Boszoradova E, Libantova J, Matusikova I, Poloniova Z, Jopcik M, Berenyi M, Moravcikova J (2011) Agrobacterium-mediated genetic transformation of economically important oilseed rape cultivars. Plant Cell Tiss Organ Cult 107:317-323 https://doi.org/10.1007/s11240-011-9982-y
  2. Burbulis N, Kupriene1 R, Blinstrubiene A (2008) Callus induction and plant regeneration from somatic tissue in spring rapeseed (Brassica napus L.) Biologja 54:58-263 https://doi.org/10.2478/v10054-008-0053-1
  3. Cardoza V, Stewart CN (2003) Increased Agrobacterium- mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyls explants. Plant Cell Rep 21: 599-604 https://doi.org/10.1007/s00299-002-0560-y
  4. Cegielska-Taras T, Pniewski T, Szala L (2008) Transformation of microspore-derived embryos of winter oilseed rape (Brassica napus L.) by using Agrobacterium tumefaciens. J Appl Gen 49(4):343-347
  5. De Block M, De Brouwer D, Tenning P(1989) Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and expression of the bar and neo genes in the transgenic plants. Plant Physiol 91:694-701 https://doi.org/10.1104/pp.91.2.694
  6. Fry J, Barnason A, Horsch RB (1987) Transformation of Brassica napus with Agrobacterium temefaciens based vectors. Plant Cell Rep 6:231-235
  7. Jonoubi P, Mousavi A, Majd A, Salmanian AH, Javaran MJ, Daneshian J (2005) Efficient regenerationof Brassica napus L. hypocotyls and genetic transformation by Agrobacterium tumefaciens. Biol Plant 49(2):175-180 https://doi.org/10.1007/s10535-005-5180-2
  8. Kahrizi D, Salmanian AH, Afshari A, Moieni A, Mousavi A (2007) Simultaneous substitution of Gly96 to Ala and Ala183 to Thr in 5-enolpyruvylshikimate-3-phosphate synthase gene of E. coli (k12) and transformation of rapeseed (Brassica napus L.) in order to make tolerance to glyphosate. Plant Cell Rep 26:95-104
  9. Kim CS, Lee SH (2006) Economic analysis of a Rape production for Biodiesel. Kor J Organ Agri 14(3):237-249
  10. Kim HJ, Lee HJ, Go YS, Roh KH, Lee YH, Jang YS, Suh MC (2010) Development of herbicide-tolerant Korean rapeseed (Brassica napus L.) cultivars. J Plant Biotechnol 37:319-326 https://doi.org/10.5010/JPB.2010.37.3.319
  11. Kim KM, Sohn JK, Chung JD (1997) Transformation of Brassica napus via Agrobacterium vector: plant regeneration and progeny analysis. Kor J Plant Tiisue Cult 24(5):269-272
  12. Knutzon DS, Thompson GA, Radke SE, Johnson WB, Knauf VC, Kridl JC (1992) Modification Brassica seed oil by antisense expression of a stearoly acyl carrier protein desaturase gene. Proc Natl Acad Sci USA 89:2624-2628 https://doi.org/10.1073/pnas.89.7.2624
  13. Lee KR, Kim EH, Roh KH, Kim JB, Kang HC, Go YS, Suh MJ, Kim HU (2016) high-oleic oilseed rapes developed with seed-specific suppression pf FAD2 gene expression. Appl Biol Chem 59(4): 669-676
  14. Lee SI, Kim YH, Lee DH, Lee YN, Park SJ, Kim JB (2010) Current status of tissue culture and genetic transformation systems in oilseed rapew plants (Brassica napus L.) J Plant Biotechnol 37: 379-387 https://doi.org/10.5010/JPB.2010.37.4.379
  15. Lehmann P, Jenner CE, Kozubek E, Greenland AJ, Walsh JA (2003) Coat protein-mediated resistance to Turnip mosaic virus in oilseed rape (Brassica napus) Mol Breeding 11:83-94 https://doi.org/10.1023/A:1022410823525
  16. Li X, Zeng L, Ren L, Chen W, Liu F, Yang H, Yan R, Chen K, Fang X (2020) Marker-free lines of phytase-transgenic Brassiaca napus show enhanced ability to utilize phytate. Plant Cell Tiss Organ Cult 140:11-22 https://doi.org/10.1007/s11240-019-01706-3
  17. Lim PO, Kim YM, Breeze E, Koo JC, Woo HR, Ryu JS, Park DH, Beynon J, Tabrett A, Buchanan-Wollston V, Nam HG (2007) Overexpression of a chromatin architecture-controlling AT-hook protein extends leaf longevity and increases the post-harvest storage life of plants. Plant J 52:1140-1153 https://doi.org/10.1111/j.1365-313X.2007.03317.x
  18. Moloney MM, Walker JM, Sharma KK (1989) High efficiency transformation of Brassica napus using Agrobacterium vectors. Plant Cell Rep 8:238-242 https://doi.org/10.1007/BF00778542
  19. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with Tobacco tissue cultures. Physiol Plant 15:473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  20. Ovesna J, Ptacek L, Opartny Z (1993) Factors influencing the regeneration capacity of oilseed rape and cauliflower in transformation experiments. Biol Plant 35:107-112 https://doi.org/10.1007/BF02921131
  21. Pechan PM (1989) Successful cocultivation of Brassica napus microspores and proembryos with Agrobacterium. Plant Cell Rep 8:387-390 https://doi.org/10.1007/BF00270075
  22. Radke SE, Andrews BM, Moloney MM, Crouch ML, Krid JC, Knauf VC (1988) Transformation of Brassica napus L. using Agrobacterium tumefactiens developmentally regulated expression of a introduced naping gene. Theor Appl Gen 75:685-694 https://doi.org/10.1007/BF00265588
  23. Stewart CN, Adang MJ, All JA, Raymer PL, Ramachandran S, Parrott WA (1996) Insect control and dosage effects in transgenic canola containing a synthetic Bacillus thuringiensis cryIAC gene. Plant Physiol 112:115-120 https://doi.org/10.1104/pp.112.1.115
  24. Thomzik JE, Hain R (1990) Transgenic Brassica napus plants obtained by co-cultivation of protoplast with Agrobacterium tumefaciens. Plant Cell Rep 9:233-236
  25. Voelker TA, Wprell AC, Anderson L, Bleibaum J, Fan C, Hawkins DJ, Radke SE, Davies HM (1992) Fatty acid biosynthesis redirected to medium chains in transgenic oilseed plants. Science 257:72-74 https://doi.org/10.1126/science.1621095
  26. Voelker TA, Hayes TR, Cranmer AM, Turner JC, Davies HM (1996) Genetic engineering of a quantitative trait: metabolic and genetic parameters influencing the accumulation of a laurate in rapeseed. Plant J 9:229-241. https://doi.org/10.1046/j.1365-313X.1996.09020229.x
  27. Wallbraun M, Sonntag K, Eisenhauer C, Krzcal G, Wang YP (2009) Phosphomannose-isomerase (pmi) gene as a selectable marker for Agrobacterium-mediated transformation of rapeseed. Plant Cell Tiss Organ Cult 99:345-351 https://doi.org/10.1007/s11240-009-9610-2
  28. Wang J, Guo C, Dai Q, Feng B, Zuo K, Lin M (2016) Salt tolerance conferred by expression of a global regulator IrrE from Deinococcus radiodurans in oilseed rape Mol Breeding 36:88
  29. Wang YP, Sonntag K, Rudolff E, Han J (2005) Production of fertile transgenic Brassica napus by Agrobacterium-mediated transformation of protoplasts. Plant Breeding 124:1-4 https://doi.org/10.1111/j.1439-0523.2004.01015.x
  30. Zhang FL, Takahata Y, Watanabe M, Xu JB (2000) Agrobacterium-mediated transformation of cotyledonary explants of Chinese cabbage (Brassica campestris L.ssp. pekinensis). Plant Cell Rep 19:569-575
  31. Zhang Y, Hu J, Han L, Wei W, Guan Z, Cong L, Chai T (2006) Efficient shoot regeneration and Agrobacterium-mediated transformation of Brassica juncea. Plant Mol Bio Rep 24:255a-255i https://doi.org/10.1007/BF02914068