DOI QR코드

DOI QR Code

Fertilization Effects on Allometric Equations and Biomass in a Moso Bamboo (Phllostachys pubescens) Stand

맹종죽 임분에 시비가 상대생장식 및 바이오매스에 미치는 영향

  • Jo, Chang-Gyu (Department of Forest Resources, Gyeongnam National University of Science and Technology) ;
  • Baek, Gyeongwon (Department of Forest Resources, Gyeongnam National University of Science and Technology) ;
  • Park, Seong-Wan (Department of Forest Resources, Gyeongnam National University of Science and Technology) ;
  • Yoo, Byung Oh (Southern Forest Resource Research Center, National Institute of Forest Science) ;
  • Jung, Su Young (Southern Forest Resource Research Center, National Institute of Forest Science) ;
  • Lee, Kwang Soo (Southern Forest Resource Research Center, National Institute of Forest Science) ;
  • Kim, Choonsig (Department of Forest Resources, Gyeongnam National University of Science and Technology)
  • 조창규 (경남과학기술대학교 산림자원학과) ;
  • 백경원 (경남과학기술대학교 산림자원학과) ;
  • 박성완 (경남과학기술대학교 산림자원학과) ;
  • 유병오 (국립산림과학원 남부산림자원연구소) ;
  • 정수영 (국립산림과학원 남부산림자원연구소) ;
  • 이광수 (국립산림과학원 남부산림자원연구소) ;
  • 김춘식 (경남과학기술대학교 산림자원학과)
  • Received : 2017.07.17
  • Accepted : 2017.11.23
  • Published : 2017.12.31

Abstract

This study was carried out to determine fertilization effects on allometric equations and biomass production in a Moso bamboo (Phllostachys pubescens) stand of the Gajwa National Experimental Forests, Jinju, Korea. The study site was fertilized for approximately 30 years to produce edible bamboo shoots. Total 20 bamboos (10 fertilized and 10 unfertilized) were cut to develop allometric equations and to estimate biomass accumulation of each bamboo component. Allometric equations of each bamboo component in the fertilized and unfertilized plots were significant (P < 0.05) with diameter at 20 cm from ground ($D_{20}$), diameter at breast height (DBH), culm height (H), and $DBH^2{\cdot}H$. Aboveground biomass estimated by the allometric equations (DBH) was significantly higher in the unfertilized plots ($106.38Mg\;ha^{-1}$) in culm density of $6,833culm\;ha^{-1}$ than in the fertilized ($57.68Mg\;ha^{-1}$) plots in culm density of $4,633culm\;ha^{-1}$. The proportion of each biomass component was culm (79%), followed by branches (14%) and leaf (7%) in the fertilized plots, whereas it was culm (81%), followed by branches (13%), and leaf (6%) in the unfertilized plots. The results indicate that aboveground biomass accumulation in a Phllostachys pubescens stand was little affected by fertilizer application because of the difference of culm density.

본 연구는 경상남도 진주시 남부산림자원연구소 가좌시험림 내 맹종죽 임분을 대상으로 죽순 생산을 위해 약 30년 동안 시비가 실시된 시비구와 인접한 무시비구의 바이오매스 추정을 위한 상대생장식과 바이오매스 생산량을 비교하기 위해 수행하였다. 총 20본(시비구 10본, 무시비구 10본)의 맹종죽을 벌채 한 후, 각 기관별 바이오매스(Y)를 종속변수로 하고 근원부 20 cm 직경($D_{20}$), 흉고직경(DBH), 수고(H: culm height), 흉고직경과 수고($DBH^2{\cdot}H$)를 독립변수(X)로 하는 모든 상대생장식의 유의성이 인정(P < 0.05)되었으며, DBH를 이용한 시비구와 무시비구 상대생장식의 상대생장계수(b)는 유의적인 차이가 없었다. 상대생장식 중 흉고직경을 독립변수로 추정된 대나무 줄기, 가지, 잎의 바이오매스는 무시비구가 시비구에 비해 유의적으로 높았으며, 지상부 총 바이오매스의 경우 무시비구가 $106.38Mg\;ha^{-1}$(임분 밀도 6,833본/ha)로, 시비구의 $57.68Mg\;ha^{-1}$(임분 밀도 4,633본/ha)에 비해 약 2배 정도 높았다. 지상부 바이오매스 분포 비율은 시비구의 경우 줄기(79%) > 가지(14%) > 잎(7%), 무시비구 경우 줄기(81%) > 가지(13%) > 잎(6%) 순으로 시비 처리에 따른 바이오매스 분포 비율에 큰 차이는 없었다. 본 연구결과에 따르면 임분 밀도 차로 인하여 시비는 맹종죽 임분의 지상부 바이오매스 축적량에 미치는 영향은 크지 않았다.

Keywords

References

  1. Christanty, L., Mailly, D. and Kimmins, J.P. 1996. "Without bamboo, the land dies": biomass, litterfall, and soil organic matter dynamics of a Javanese bamboo talun-kebun system. Forest Ecology and Management 87(1-3): 75-88. https://doi.org/10.1016/S0378-1127(96)03834-0
  2. Fatemi, F.R., Yanai, R.D., Hamburg, S.P., Vadeboncoeur, M.A., Arthur, M.A., Briggs, R.D. and Levine, C.R. 2011. Allometric equations for young northern hardwoods: the importance of age-specific equations for estimating aboveground biomass. Canadian Journal of Forest Research 41(4): 881-891. https://doi.org/10.1139/x10-248
  3. Hwang, J.H., Chung, Y.G., Lee, S.T., Kim, B.B., Shin, H.C., Lee, K.J. and Park K.J. 2005. Estimation of aboveground biomass and belowground nutrient contents for a Phyllostachys pubescens stand. Journal of Korean Forest Society 94(3): 161-167.
  4. Kalra, Y.P. and Maynard, D.G. 1991. Methods Manual for Forest Soil and Plant Analysis. Forestry Canada, Northwest Region, Northern Forestry Centre, Edmonton, Alberta. Information Report. NOR-X-319E. pp. 116.
  5. Kleinhenz, V. and Midmore, D. 2001. Aspect of bamboo agronomy. Advances in Agronomy 74: 99-145.
  6. Lee, K.S., Jung, S.Y., Son, Y.M., Lee, K.H., Bae, E.J. and Yun, S.L. 2012. Biomass estimation of Phyllostachys pubescens stands in KFRI, southern forest research center. Journal of Korean Forest Society 101(1): 138-147.
  7. Lee, K.S., Jung, S.Y., Yoo, B.O., Park, J.H., Kim, C. and Ju, N.G. 2014. Biomass estimation for Moso bamboo (Phyllostachys pubescens) stands and Henon bamboo (Phyllostachys nigra) stands in southern Korea. Journal of Agriculture and Life Science 48(6): 109-118. https://doi.org/10.14397/jals.2014.48.6.109
  8. Li, X.B., Shupe, T.F., Peter, G.F., Hse, C.Y. and Eberhardt, T.L.. 2007. Chemical changes with maturation of the bamboo species Phyllostachys pubescens. Journal of Tropical Science 19(1): 6-12.
  9. Milliken. G.A., and Johnson, D.E. 2002. Analysis of Messy Data. Volume III: Analysis of Covariance. Chapman and Hall/CRC, London. pp. 605.
  10. National Institute of Forest Science. 2016. Distribution Status of Bamboo Forest Resources in Korea, December 2016 (No.16-27), Seoul, Korea. pp. 17.
  11. Nath, A.J., Lal, R. and Das, A.K. 2015. Managing woody bamboos for carbon farming and carbon trading. Global Ecology and Conservation 3: 654-663. https://doi.org/10.1016/j.gecco.2015.03.002
  12. Park, I.H., and Ryu, S.B. 1996. Biomass, net production and nutrient distribution of bamboo Phyllostachys stands in Korea. Journal of Korean Forest Society 85(3): 453-461.
  13. Peichl, M. and Arain, M.A. 2007. Allometry and partitioning of above- and belowground tree biomass in an age-sequence of white pine forests. Forest Ecology and Management 253(1-3): 68-80. https://doi.org/10.1016/j.foreco.2007.07.003
  14. SAS Institute Inc. 2003. SAS/STAT Statistical Software. Version 9.1. SAS publishing Cary, NC. USA.
  15. Tripathi, S.K., and Singh, K.P. 1996. Culm recruitment, dry matter dynamics and carbon flux in recently harvested and mature bamboo savanna in the Indian dry tropic. Ecological Research 11(2): 149-164. https://doi.org/10.1007/BF02347681
  16. Yen, T.-M., Ji, Y.-J. and Lee, J.-S. 2010. Estimating biomass production and carbon storage for a fast-growing Makino bamboo (Phyllostachys makinoi) plant based on the diameter distribution model. Forest Ecology and Management 260: 339-344. https://doi.org/10.1016/j.foreco.2010.04.021
  17. Yen, T.-M. and Lee, J.-S. 2011. Comparing aboveground carbon sequestration between Moso bamboo (Phyllostachys heterocycla) and China fir (Cunninghamia lanceolata) forests based on the allometric model. Forest Ecology and Management 261: 995-1002. https://doi.org/10.1016/j.foreco.2010.12.015
  18. Yen, T.-M. 2016. Culm height development, biomass accumulation and carbon storage in an initial growth stage for fast-growing Moso bamboo (Phyllostachys pubescens). Botanical Studies 57: 10. https://doi.org/10.1186/s40529-016-0126-x
  19. Zhang, H., Zhuang, S., Sun, B., Ji, H., Li, C., and Zhou, S. 2014. Estimation of biomass and carbon storage of Moso bamboo (Phyllostachys pubescens Mazel ex Houz.) in southern China using a diameter-age bivariate distribution model. Forestry 87(5): 674-682. https://doi.org/10.1093/forestry/cpu028