• 제목/요약/키워드: ship collision analysis

검색결과 176건 처리시간 0.037초

선박충돌사고 위험성 제어방안에 관한 연구 (A Study on the Risk Control Measures of Ship′s Collision)

  • 양원재;고재용
    • 대한조선학회논문집
    • /
    • 제41권3호
    • /
    • pp.41-48
    • /
    • 2004
  • Ship is being operated under a highly dynamic environments and many factors are related with ship's collision and those factors are interacting. So, the analysis on ship's collision causes are very important to prepare countermeasures which will ensure the safe navigation. This study analysed the ship's collision data over the past 10 years(1991-2000), which is compiled by Korea Marine Accidents Inquiry Agency. The analysis confirmed that ‘ship's collision' is occurred most frequently and the cause is closely related with human factor. The main purpose of this study is to propose risk control measures of ship's collision. For this, the structure of human factor is analysed by the questionnaire methodology. Marine experts were surveyed based on major elements that were extracted from the human factor affecting to ship's collision. FSM has been widely adopted in modeling a dynamic system which is composed of human factors. Then, the structure analysis on the causes of ship's collision are performed using FSM. This structure model could be used in understanding and verifying the procedure of real ship's collision. Furthermore it could be used as the model to prevent ship's collision and reduce marine accidents.

주변 유체를 고려한 선박 충돌해석 기법 연구 (Ship Collision Analysis Technique considering Surrounding Water)

  • 이상갑;이정대
    • 대한조선학회논문집
    • /
    • 제44권2호
    • /
    • pp.166-173
    • /
    • 2007
  • Collision analysis problems between ship to ship can be generally classified into the external mechanics(outer dynamics) and internal mechanics(inner dynamics). The former can be also dealt with the concept of fluid-structure interaction and the use of rigid body dynamic program, depending on the ways handling the hydrodynamic pressure due to surrounding water. In this study, full scale ship collision simulation was carried out, such as a DWT 75,000 ton striking ship collided at right angle to the middle of a DWT 150,000 struck ship with 10 knots velocity, coupling MCOL, a rigid body mechanics program for modeling the dynamics of ships, to hydrocode LS-DYNA. It could be confirmed that more suitable damage estimation would be performed in the case of the collision simulations with consideration of surrounding water through the comparison with the collision simulation results of fixed struck ships without it. Through this study, the opportunity could be obtained to establish a more effective ship collision simulation technique between ship to ship.

Collision-Damage Analysis of a Floating Offshore Wind Turbine Considering Ship-Collision Risk

  • Young-Jae Yu;Sang-Hyun Park;Sang-Rai Cho
    • 한국해양공학회지
    • /
    • 제38권3호
    • /
    • pp.124-136
    • /
    • 2024
  • As the number of offshore wind-power installations increases, collision accidents with vessels occur more frequently. This study investigates the risk of collision damage with operating vessels that may occur during the operation of an offshore wind turbine. The floater used in the collision study is a 15 MW UMaine VolturnUS-S (semi-submersible type), and the colliding ships are selected as multi-purpose vessels, service operation vessels, or anchor-handling tug ships based on their operational purpose. Collision analysis is performed using ABAQUS and substantiation is performed via a drop impact test. The collision analyses are conducted by varying the ship velocity, displacement, collision angle, and ship shape. By applying this numerical model, the extent of damage and deformation of the collision area is confirmed. The analysis results show that a vessel with a bulbous bow can cause flooding, depending on the collision conditions. For damage caused by collision, various collision angles must be considered based on the internal stiffener arrangement. Additionally, the floater can be flooded with relatively small collision energy when the colliding vessel has a bulbous bow.

근접상황 선박충돌회피지원모델에 관한 연구(I) (Ship Collision Avoidance Support Model in Close Quarters Situation(I))

  • 양형선;예병덕
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2004년도 추계학술대회
    • /
    • pp.89-94
    • /
    • 2004
  • 선박운항시스템은 첨단화 되고 있으며, 선박충돌회피시스템에 관한 연구가 활발히 진행되고 있다. 그럼에도 선박 충돌사고 빈도수는 줄어들지 않는 설정이다. 시스템에 의한 충돌회피 조종에도 불구하고 근접거리로 충돌위험이 계속 존재한다면, 충돌위험 결정 및 판단기준에 있어서 단순히 TCPA, DCPA만의 입력변수 사용은 근접상황에서 충돌위험회피에 도움을 주지 못한다. 최근 5년간 국내 선박충돌사고 상대선 초인거리 조사에 의하면 약 $45\%$가 2마일 이하 근거리 초인하는 것으로 분석된다. 이런 요소는 선박조종성능 특성과 행위결정을 위한 시간적 특성의 영향을 많이 받는 근접조우를 유발한다. 따라서 근접상황에서 선박충돌회피동작 결정에 관한 연구는 안전항해의 필수적인 요소라고 할 수 있을 것이다. 본 논문에서는 선박조종성능 특성에 따른 선회조종과 선박의 거동을 분석하여 근접상황에서 신속하고 올바른 충돌회피 조선을 지원할 수 있는 선박충돌회피지원 모델을 제시한다.

  • PDF

근접상황 선박충돌회피지원모델에 관한 연구( I ) (Ship Collision Avoidance Support Model in Close Quarters Situation( I ))

  • 양형선;예병덕
    • 한국항해항만학회지
    • /
    • 제28권10호
    • /
    • pp.827-832
    • /
    • 2004
  • 선박운항시스템은 첨단화 되고 있으며, 선박충돌회피시스템에 관한 연구가 활발히 진행되고 있다. 그럼에도 선박 충돌사고율은 줄어들지 않는 실정이다. 시스템에 의한 충돌회피 조종에도 불구하고 근접거리로 충돌위험이 계속 존재한다면, 충돌위험 결정 및 판단기준에 있어서 단순히 TCPA, DCPA만의 입력변수 사용은 근접상황에서 충돌위험회피에 도움을 주지 못한다. 최근 5년간 국내 선박충돌사고 상대선 초인거리 조사에 의하면 약 $45\%$가 2마일 이하 근거리 초인하는 것으로 분석된다. 이런 요소는 선박조종성능 특성과 행위결정을 위한 시간적 특성의 영향을 많이 받는 근접조우를 유발한다. 따라서 근접상황에서 선박충돌회피동작 결정에 관한 연구는 안전항해의 필수적인 요소라고 할 수 있을 것이다. 본 논문에서는 선박조종성능 특성에 따른 선회조종과 선박의 거동을 분석하여 근접상황에서 신속하고 올바른 층돌회피 조선을 지원할 수 있는 선박충돌회피지원 모델을 제시한다.

파일지지 구조물의 선박 충돌거동에 대한 해석 (Analysis of Ship Collision Behavior of Pile Supported Structure)

  • 배용귀;이성로
    • 대한토목학회논문집
    • /
    • 제28권3A호
    • /
    • pp.323-330
    • /
    • 2008
  • 선박과 방호구조물 충돌시 구조물의 동적 특성들을 분석하기 위하여 항로상에 위치한 교량의 방호구조물인 강관파일그룹에 대한 선박충돌해석을 수행하였다. 해석은 선박과 파일의 유한요소 모델링, 비선형성 재료의 모델링, 강성충돌해석, 변위기반해석 그리고 충돌시나리오에 대한 연성충돌해석 등을 포함하고 있다. 강체벽에 대한 강성충돌해석을 통하여, 선수부의 충돌유형에 따른 충돌하중을 산정하였다. 변위기반 해석에서 방호시스템이 최대 수평 이격거리 내에서 흡수할 수 있는 대략적인 에너지의 범위를 산정할 수 있었다. 충돌시나리오별 연성충돌해석에서는 충돌시 거동을 방호시스템 설계를 고려하면서 검토하였다. 파일지지구조물의 에너지소산 메카니즘 분석을 통해 방호구조물의 최적 설계를 도출할 수 있다.

선박충돌 위기상황에서 선박운항자가 지각한 충돌위험도 분석 (Analysis of Collision Risk Perceived by Ship Operators in Ship Collision Risk Situation)

  • 김대식;임정빈
    • 대한인간공학회지
    • /
    • 제36권5호
    • /
    • pp.447-458
    • /
    • 2017
  • Objective: The purpose of this study is to present the basic guidelines for preventing human error by measuring and analyzing the risk of collision perceived by the ship operator in the collision risk situation by using Korea Coast Guard patrol ships. Background: In the last 5 years, 97.5% of the causes of ship collision occurred at the sea was caused by human factors. However, the rate of marine accidents due to human error has not been reduced yet. Experiments and researches on the ship operators using the ships in actual operation are rarely performed. Method: Using two K.C.G Ships on the sea, the ship measured by 30 persons who are the subject of the ship (ship operator) when both ships approach and the relative distance gradually decreases in four encounter situations, perceived ship collision risk (PSCR) data were analyzed by statistical analysis. Results: The age and boarding career of the ship operator in the situation of ship collision risks encountered a negative impact on perceived collision risk in all four opposing encounter situations S1 ($000^{\circ}$), S2 ($045^{\circ}$), S3 ($090^{\circ}$) and S4 ($135^{\circ}$) respectively. That is, the higher the age of the ship operator, the lower the perceived risk of collision and the lower the age, the higher the risk of collision. Also, there was a difference between the average of group A (20~30 years) and group B (40~50 years) according to age of the ship operators at $000^{\circ}$, $045^{\circ}$ and $090^{\circ}$ and there was no difference at $135^{\circ}$. The mean difference of the experience of boarding career was also significantly different between group A (less than 4 years) and group B (more than 5 years), but there was no significant difference at $135^{\circ}$. Conclusion: The results showed that age and boarding career of the ship operators had negative impact on perceived collision risk and there was a difference in perceived risk of collision according to age and abundance of boarding career. As a result, by focusing on the ship operators who are in the age group of 20~30 years old and have less than 4 years of experience in boarding the ship. It is expected that the effect of prevention of marine accidents can be expected by avoiding collision avoidance. Application: The results of this study can be used as policy data of related organizations to prevent human error of ship operators and as training data of training institutes.

Comparative Study on Collision Strength of LNG Carriers

  • Choe, Ick-Hung;Kim, Jae-Hyun;Ahn, Ho-Jong;Kim, Oi-Hyun
    • Journal of Ship and Ocean Technology
    • /
    • 제5권3호
    • /
    • pp.36-44
    • /
    • 2001
  • The collision energy absorbing characteristics of side structure of the LNG carriers which have the cargo containment systems of the spherical and the membrane types are compared. A failure mechanism of the double hull side structures of 130, 000 $m^3$ class LNG carriers under sideways collision event has been simulated by using the detailed finite element calculations. In ship collision analysis, the finite element method based on explicit time integration has been use[1 with much success. Finite element modeling techniques for detail description of structural members antral ship motion regarding the dynamic behavior allowed to investigate the effect of bow shape and the initial contact position on side shell of collided ship. In the numerical simulations of the ship-to-ship sideways collision, the effect of the colliding bow shapes and the change of the colliding ship draft are investigated. The critical collision energy which is absorbed by a side structure of a collided ship until the fore-end of colliding ship arrives at the boundary of the cargo tank is calculated. The critical speed of specified colliding ships which can not penetrate the boundary of the LNG cargo tank of the collided ship under collision accident if evaluated.

  • PDF

구조물의 선박충돌 해석 (Ship Collision Analysis of Structure)

  • 이성로;배용귀
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.347-350
    • /
    • 2005
  • A ship collision analysis by finite element method is performed considering the effects of mass and speed of ship and material and shape of structures to analyze the dynamic characteristics by ship collision. From this analysis, collision load-time history and inelastic deformation of ship and structures are obtained. Dynamic characteristics are different from each other according to interaction. between ship and structures. It seems that there are lots of factor to have effects on the ship-structures interaction. But because little information is available on the behavior of the inelastic deformation of materials and structures during the type of dynamic impacts associated with vessel impact, assumptions based on experience and sound engineering practice should be substituted. Therefore more researches on the interaction between ship and structures are required.

  • PDF

A Study on Construction of Collision Reproducing Simulator and Application to Analysis of Marine Casualty

  • Sohn, Kyoung-ho;Bae, Jun-young
    • 한국항해항만학회지
    • /
    • 제28권2호
    • /
    • pp.113-119
    • /
    • 2004
  • Ships' collision accident has often occurred in congested waterways or in harbour areas. To examine the cause of collision accident may be necessary to prevention against another similar one. We discuss the construction of ship-manoeuvring-simulator system used for reproducing ships' collision phenomenon The system consists of one simulator bridge for own ship and two control consoles for own ship and target ship. Own ship and target ship are linked each other, and are simultaneously manoeuvred in simulator bridge or at control console respectively. And a simulator experiment for reproducing ships' collision phenomenon and for examining the cause of accident is carried out. Through the present case study, we find out that the constructed simulator system is very useful for reproducing ships' collision phenomenon and for examining the cause of accident.