• Title/Summary/Keyword: shielding plate

Search Result 109, Processing Time 0.021 seconds

Measurement of Apron Shielding Rate for X-ray and Gamma-ray (X선 및 감마선에 대한 apron의 차폐율 측정)

  • Park, Myeong-Hwan;Kwon, Deok-Moon
    • Journal of radiological science and technology
    • /
    • v.30 no.3
    • /
    • pp.245-250
    • /
    • 2007
  • This research measured the shielding rates of apron 0.25 and 0.5 mmPb for X-ray energy in diagnosis radiation system and gamma-ray energy of $^{99m}Tc$-MDP and $^{18}F$-FDG. X-ray energies were measured on effective energy of $26.2{\sim}45.6\;keV$ when additional filtering plate of 0, 2 mmAl is used within the range of tube voltage $40{\sim}120\;kVp$, and at this time, apron 0.5 mmPb has shown about 5.5% of increase in its shielding rate over 0.25 mmPb at the highest quality. Besides, the aprons of the two types have shown high shielding rate of over 90% for direct X-ray and spatial dose rate. And, in case 0.25 and 0.5 mmPb aprons were used at 140keV of $^{99m}Tc$-MDP, the shielding effects were between 30 and 53%, and at high energy of 511 keV, $^{18}F$-FDG, the shielding effects of apron, $1.3{\sim}3.6%$, were very small.

  • PDF

Assessment of Xenogenic Bone Plate and Screw using Finite Element Analysis

  • Heo, Su-young;Lee, Dong-bin;Kim, Nam-soo
    • Journal of Veterinary Clinics
    • /
    • v.35 no.3
    • /
    • pp.83-87
    • /
    • 2018
  • The aim of this study was to evaluate the biomechanical behavior of xenogenic bone plate system (equine bone) using a three-dimensional finite element ulna fracture model. The model was used to calculate the Von Mises stress (VMS) and stress distribution in fracture healing periods with metallic bone plate and xenogenic bone plate systems, which are installed while the canine patient is standing. Bone healing rate (BHR) (0%) and maximum VMS of the xenogenic plate was similar to the yield strength of equine bone (125 MPa). VMS at the ulna and fracture zones were higher with the xenogenic bone plate than with the metallic bone plate at BHRs of 0% and 1%. Stress distributions in fracture zone were higher with the xenogenic bone plate than the metallic bone plate. This study results indicate that the xenogenic bone plate may be considered more beneficial for callus formation and bone healing than the metallic bon plate. Xeonogenic bone plate and screw applied in clinical treatment of canines may provide reduced stress shielding of fractures during healing.

Hypervelocity Impact Analysis Of Composite Plate For Space Shielding System (우주용 쉴딩 시스템에 적용할 복합재료 평판의 초고속 충돌 해석)

  • Son, Yu-Na;Moon, Jin-Bum;Lim, Gun;Kim, Chun-Gon
    • Composites Research
    • /
    • v.23 no.6
    • /
    • pp.14-18
    • /
    • 2010
  • Among the factors that threaten spacecraft, Micrometeoroid and Orbital Space Debris(MMOD) cause damage to spacecraft and impact velocity is about 8~70km/s. Nowadays, various Whipple Shield are studied and applied to protect spacecraft. As the materials used to Shielding System, aluminum is usually used but composite is also used increasingly. So this study compared characteristics of hypervelocity impact of Aluminum and composites through finite element analysis. The Projectile was a spherical shape using Aluminum 2017-T4, and aluminum plate was using Aluminum 6061-T6, CFRP plate was using T300/5208. Initial impact velocity of projectile was 1km/s. As a result, kinematic energy of projectile decreased to about 64J and about 63J for aluminum plate and CFRP plate, respectively after impact. Although both results is almost same about the absorption of impact energy, you can think the CFRP has good ballistic characteristic, because CFRP is lighter about 1.7 times compared with density of aluminum.

A Low-Density Graphite-Polymer Composite as a Bipolar Plate for Proton Exchange Membrane Fuel Cells

  • Dhakate, S.R.;Sharma, S.;Mathur, R.B.
    • Carbon letters
    • /
    • v.14 no.1
    • /
    • pp.40-44
    • /
    • 2013
  • The bipolar plate is the most important and most costly component of proton exchange membrane fuel cells. The development of a suitable low density bipolar plate is scientifically and technically challenging due to the need to maintain high electrical conductivity and mechanical properties. Here, bipolar plates were developed from different particle sizes of natural and expanded graphite with phenolic resin as a polymeric matrix. It was observed that the particle size of the reinforcement significantly influences the mechanical and electrical properties of a composite bipolar plate. The composite bipolar plate based on expanded graphite gives the desired mechanical and electrical properties as per the US Department of Energy target, with a bulk density of 1.55 $g.cm^{-3}$ as compared to that of ~1.87 $g.cm^{-3}$ for a composite plate based on natural graphite (NG). Although the bulk density of the expanded-graphite-based composite plate is ~20% less than that of the NG-based plate, the I-V performance of the expanded graphite plate is superior to that of the NG plate as a consequence of the higher conductivity. The expanded graphite plate can thus be used as an electromagnetic interference shielding material.

Numerical Stress Analysis of bone plate System using 3-dimensional finite element method (3차원 유한 요소법을 이용한 골절판의 응력 해석)

  • Kim, Hyun-Su;Kwon, Young-Soo
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1991 no.05
    • /
    • pp.74-78
    • /
    • 1991
  • Conventional compression bone fracture plates sometimes cause osteoporosis under the plate due to their high rigidity which in turn transfer physiological load mostly through the plates and screws. In order to prevent the osteopenia we have designed a system which have a viscoelastic washer between plate and screw head. The washer is made of a biocompatible ploymer (untra high molecular weight polyethylene, UHMWPE). Three-dimensional finite element meshes of the human femur with the conventional and new concept bone plate ere generated and the comparative stress analyses are performed with static half-stance loading condition. The results of analyses showed that could reduce the stress shielding effect compared with the conventional plate.

  • PDF

Evaluation of the X-ray Shielding Ability of Lead Free Board Shielding in the CT Room (CT실에서 무연보드 차폐체의 X선 차폐능력 평가)

  • Sung-Joon Kim;Tae-Ho Han;Hyo-Won Lee;Yu-Whan Oh;Seung-Chul Kim;Jung-Min Kim
    • Journal of radiological science and technology
    • /
    • v.47 no.4
    • /
    • pp.249-254
    • /
    • 2024
  • This study compared the X-ray shielding abilities of the shields using Computed Radiography(CR) System after manufacturing a lead-free boards using gypsum and BaSO4, an eco-friendly X-ray shielding material. Total six lead-free boards were manufactured with BaSO4 concentrations of 25 %, 50 % and thickness of 10 mm, 15 mm, 20 mm respectively, and additional thickness of 1.0 mm, 1.5 mm, 2.0 mm leads were prepared. In the experiment, Nine shields were placed on the Image Plate and placed in a Computed Tomography(CT) Room where CT scans were performed for 2 weeks. After that, the X-ray image of the shields were obtained through CR Reader, and Pixel Value(PV) were measured to evaluated the X-ray shielding abilities of the lead-free shields. The criterion for evaluating the shields was determined by comparing PV of lead-free board to that of the 1.5 mm thickness lead used in the CT rooms. As a result of the experiment, the PV of the lead-free boards within 25 % of the BaSO4 concentration and within 10 mm of the thickness were not enough to be used as X-ray shields in the CT Room because they did not reach the PV of the 1.5 mm thickness lead. BaSO4 concentration of 50 % at 20 mm thickness showed PV of 1.5 mm lead thickness or more indicating that it has an X-ray shielding ability to replace lead in the CT room

Analysis of Electric Shock Accident on 4.16 kV Class Circuit breaker for Power Plant (발전소용 4.16 kV급 차단기에서 감전사고 사례 분석)

  • Park, Nam-Kyu;Song, Jae-Yong;Kim, Jin-Pyo;Goh, Jae-Mo
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.54-60
    • /
    • 2014
  • This paper describes electric shock accidents on a 4.16 kV class circuit breaker for power plant. Electric shock accidents mostly involve damage of human life, in comparison with electrical fire, rate of human death tend to be higher in electric shock accidents. Specially, in a high voltage facilities rate of human death comprised about 43.7% by electric shock accidents. If electric shock accidents happen in a 4.16 kV class circuit breaker for power plant, then the power plant discontinue power production. Electric shock accidents in a power plant have a great ripple effect such as an electric power shortage. In this paper, we analyzed electric shock accidents on a 4.16 kV class circuit breaker for power plant. From the analysis results, we confirmed a cause of electric shock accidents on a 4.16 kV class circuit breaker, it happened by defect of interlock equipment or occurrence of breakdown between first feeder contactor and shielding plate. In order to reduce electric shock accidents on a 4.16 kV class circuit breaker, the power plant should consider improvement of interlock equipment and insulation of feeder contactor in circuit breaker.

Optimal Height of Shielding Plate of Radiation in Posteroanterior Chest Radiography for Pregnant Women on Korea (한국인 임산부의 흉부 후-전 방향 방사선검사 시 적절한 차폐막 높이)

  • Joo, Young-Cheol;Kim, Gyoo-Hyung
    • Journal of radiological science and technology
    • /
    • v.41 no.2
    • /
    • pp.97-102
    • /
    • 2018
  • The purpose of this study is to provide the basic data for reducing unnecessary radiation dose to the abdomen and fetus of pregnant women by presenting proper height of shielding protector for efficient abdominal shielding in chest PA examination of Korean pregnant women. The subjects of this study were 288 persons who were eligible for this study among 798 pregnant women who had chest PA examination from January 1, 2015 to December 31, 2016 Retrospective study was performed. Measurements was performed from the apex of the right and left lungs to costophrenic angle of the right and left lungs and to the lowest costophrenic angle among the right and left lungs at the top of the image(this line called Joo's line in this study). The mean of the right and left lung height of pregnant women were 259.09 mm and 263.57 mm, respectively. Also, the average height of the Joo's line designed by the researcher for proper abdominal radiation protection was 322.15 mm. For proper and efficient abdominal radiation protection for pregnant women, it is necessary to adjust the shielding according to the height of the pregnant woman. It is appropriate that the height of the shielding protector should be adjusted so that the upper part of the shield is located at 342.30 mm below from upper part of the detector.

Development of Inspection Technique for Filling or Unfilling of Containment Liner Plate Backside Concrete in Nuclear Power Plant (원전 격납건물 라이너플레이트 배면 콘크리트 채움 여부 점검 기술 개발)

  • Lee, Jeong Seok;Kim, Wang Bae;Kwak, Dong Ryul
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.37-41
    • /
    • 2020
  • The Nuclear containment building is a main safety-related structure that performs shielding and conservation functions to prevent highly radioactive materials from leakage to the outside environment in the case of various environmental conditions and postulated accidents. The containment building contains a reactor, steam generator, pressurizer, tank, reactor coolant system, auxiliary system and engineering safety system, and is designed so that highly radioactive materials above the limits specified in 10 CFR 100 do not escape to the outside environment in the case of LOCA(Loss of Coolant Accident) for instance. The containment metal liner plate(CLP) is a carbon steel plate with a nominal plate thickness of 6 mm, which functions as a mold for the wall and dome of the containment building when concrete is filled, fulfills airtightness to prevent leakage of seriously radioactive materials. In recent years, backside corrosion was found on the liner plate in some domestic nuclear power plants. The main cause of backside corrosion was unfilled concrete. In this paper, an inspection technique of assessing filling suitability for CLP backside concrete is developed. Results show that the validity of inspection technique for CLP backside concrete using vibration sensor is successfully verified.