• Title/Summary/Keyword: shell-melamine

Search Result 10, Processing Time 0.025 seconds

Preparation of Mg(OH)2-Melamine Core-Shell Particle and Its Flame Retardant Property (멜라민이 코팅된 수산화마그네슘 입자의 제조와 그 복합입자의 난연특성)

  • Lim, Hyung-Mi;Yoon, Joon-Ho;Jeong, Sang-Ok;Lee, Dong-Jin;Lee, Seung-Ho
    • Korean Journal of Materials Research
    • /
    • v.20 no.12
    • /
    • pp.691-698
    • /
    • 2010
  • Magnesium hydroxide-melamine core-shell particles were prepared through the coating of melamine monomer on the surface of magnesium hydroxide in the presence of phosphoric acid. The melamine monomer was dissolved in hot water but recrystallized on the surface of magnesium hydroxide by quenching to room temperature in the presence of phosphoric acid. The core-shell particle was applied to low-density polyethylene/ ethylene vinyl acetate (LDPE/EVA) resin by melt-compounding at $180^{\circ}C$ as flame retardant. The effect of magnesium hydroxide and melamine content has been studied on the flame retardancy of the core-shell particles in LDPE/EVA resin according to the preparation process and purity of magnesium hydroxide. Magnesium hydroxide prepared with sodium hydroxide rather than with ammonia solution revealed higher flame retardancy in core-shell particles with LDPE/EVA resin. At 50 wt% loading of flame retardant, core-shell particles revealed higher flame retardancy compared to that of the exclusive magnesium hydroxide in LDPE/EVA composite, and it was possible to satisfy the V0 grade in the UL-94 vertical test. The synergistic flame retardant effect of magnesium hydroxide and melamine core-shell particles was explained as being due to the endothermic decomposition of magnesium hydroxide and melamine, which was followed by the evolution of water from the magnesium hydroxide and porous char formation due to reactive nitrogen compounds, and carbon dioxide generated from melamine.

Preparation and application of the functionalized Shampoo with core-shell microcapsule (코아-쉘 마이크로 캡슐을 이용한 기능성 샴푸의 제조 및 응용)

  • Seo, Mi-Young;Kim, Eun-Ji;Kim, In-Kyoung;Choi, Seong-Ho
    • Journal of Advanced Technology Convergence
    • /
    • v.1 no.1
    • /
    • pp.7-13
    • /
    • 2022
  • In this study, we prepared the functionalized Shampoo with three-type functionalized microcaples which were synthesized by microcapsulation, respectively. In detail, the functionalized microcapsule was included such as (1) the functionalized microcapsule with core-menthol and shell-melamine resin and (2) the functionalized microcapsule with core-menthol and shell-lecithin, and (3) the functionalized microcapsule with core-cinnamon oil and shell-lecithin, respectively. The size and morphology of the prepared microcapsules was evaluated via Optical Microscopy (OM), Scanning Electron Microscopy (SEM) and Dynamic Light Scattering (DLS). From these results, the prepared microcapsules with size of 0.1~0.2 ㎛ and spherical morphology was confirmed. Furthermore, we applied the prepared Shampoo to treat hair. As results we confirmed that the scalp temperature was decreased about 3~4 ℃ compared to no treatment. This result may be considered that the core compounds are vaporize when the functionalized Shampoo is treated on scalp. We will determine the change of scalp pore, diameter of hair, and etc during treatment of the functionalized Shampoo.

Preparation and Characterization of Functional Microcapsules Containing Suspensions of Conducting Materials (전도성 물질 서스펜션을 함유한 마이크로캡슐)

  • Ihm, DaeWoo;Kwon, Won Ho
    • Applied Chemistry for Engineering
    • /
    • v.26 no.1
    • /
    • pp.40-46
    • /
    • 2015
  • Microcapsules containing the suspension of conducting materials such as carbon nanotube (CNT) or polyaniline (PANI) were prepared by in-situ polymerization of melamine and formaldehyde. Stable microcapsules were prepared and the mean diameter of the observed microcapsules was in the range of $10-20{\mu}m$. The surface morphology and chemical structure of microcapsules were investigated using optical microscope (OM), scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FT-IR). The thermal properties of samples were investigated by thermogravimetric analysis (TGA). The conductivity of ruptured microcapsule containing the suspension of CNTs or PANIs in tetrachloroethylene and Isopar-G was measured. As the amount of CNTs and PANIs in the core of microcapsules increased, the measured current increased. Conductivity measurement results suggest that poly (melamine-formaldehyde) based core-shell microcapsules could be applied to self-healing electronic materials systems, where CNTs or PANIs bridge a broken circuit upon release.

The characteristics of microencapsulated phase-change materials (상전이 마이크로캡슐 재료의 축열특성)

  • 임대우
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.53-56
    • /
    • 2003
  • The objective of this research is to investigate the thermal behavior of microencapsulated phase-change materials(MEPCM), and a shell of melamine-formaldehyde. These PCM materials were tested using DSC and thermal data station. Fabrics with enhanced thermal properties were prepared by padding the fabrics with the microcapsules containing PCM and acryl binder. The rate of temperature increase was significantly decreased as the amount of MEPCM added on the surface of the fabrics increased.

  • PDF

The Effects of PCM Capsule Sizes on the Properties of Acrylic Coatings (PCM 캡슐의 크기가 아크릴 코팅의 물성에 미치는 영향)

  • Hur, Soon-Ryoung;Lee, Sung-Goo;Choi, Kil-Yeong;Lee, Jae Heung;Hong, Geun-Hye;Kim, Hyung-Joong
    • Journal of Adhesion and Interface
    • /
    • v.6 no.1
    • /
    • pp.11-18
    • /
    • 2005
  • The capsules were prepared from a phase change material (PCM) of octadecane as a core material and melamine formaldehyde resin as a shell material. The PCM capsule size was varied in the range of $3{\sim}25{\mu}m$. The core contents and sizes of the PCM capsule, were determined by DSC and SEM, respectively. An acrylic coating material which contains butyl acrylate (BA), methyl metacrylate (MMA) and acrylic acid (AA) were synthesized by emulsion polymerization. The films were prepared from the acrylic emulsion and PCM capsules which have various capsule sizes. From the results of SEM experiment, it was observed that the PCM capsules were well dispersed inside the film and the surface of the film became less rough when the PCM capsule size was small. The swelling ratio of the films were not significantly affected by the PCM capsule size. However, the tensile strength and elongation of the films were greatly decreased with increasing the PCM capsule size.

  • PDF

Microcapsules Containing Self-Healing Agent with Red Dye (빨간 색소를 함유한 자가치료제 마이크로캡슐)

  • Guang, Yang;Lee, Jong Keun
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.356-361
    • /
    • 2013
  • Microcapsules of two different self-healing agents, 5-ethylidene-2-norbornene (ENB) and ENB with a crosslinker, surrounded by a melamine-urea-formaldehyde shell were manufactured. In this work, a red dye was incorporated into the self-healing agents as a tracer for better visual observations. It revealed that the incorporation of a red dye into self-healing agents did not disturb the formation of microcapsules from the examination of thermal resistance, particle size/size distribution and morphology of the resulting microcapsules. Releasing of self-healing liquid into the induced crack from ruptured microcapsules and filling between crack planes were observed using an optical microscope. Also observed was the reaction of filled healing agent with embedded Grubbs' catalyst in an epoxy coating layer.

Study on Self-Healing Asphalt Containing Microcapsule (마이크로캡슐이 내재된 자기치유 아스팔트에 관한 연구)

  • Kwon, Young-Jin;Hong, Young-Keun
    • Elastomers and Composites
    • /
    • v.48 no.3
    • /
    • pp.232-240
    • /
    • 2013
  • Microcapsules having healing agent were prepared in which 2,6-dimethylphenol (DMP) as a healing agent forms the core and melamine/formaldehyde resin forms the shell. Microcapsule-contained asphalts showed better mechanical properties than non-contained ones. And as the rest time passed the impact strength of microcapsule-contained asphalt was getting higher than that of asphalt without the microcapsule. As the rest time of 15 days passed, the original strength was restored. This tells that microcapsule-contained asphalt had the ability of self-healing. X-ray photos proved that DMP on asphalt fracture surface, which were burst out of the microcapsules when cracks occurred on asphalt, were polymerized to polyphenyleneoxide and this PPO covered the crack and healed the damage.

The Study of Encapsulation Technique for Microcapsule Using Core Materials with Low Melting Point (저융점을 가진 Core 물질을 이용한 내구성 Microcapsule 제조 기술)

  • Noh, Kun-Ae;Gang, Eu-Gene;Kim, Sang-Hern
    • Journal of the Korean Applied Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.273-284
    • /
    • 2001
  • A series of microcapsule were synthesized by using several PCM(Phase Change Material) as a core material and gelatin/arabic gum, melamine/formaldehyde as a shell material. Coacervation technique and in situ polymerization were adopted in synthesizing microcapsules. In the microencapsulation by coacervation, tetradecane and octadecane were used as core materials. In the microencapsulation by situ polymerization tetradecane, pentadecane, hexadecane, heptadecane, octadecane, and nonadecane were used as core material. The synthesized microcapsule was examined to observe the shape of the microcapsule. The particle size analysis was performed by particle size analyzer. The thermal properties(e.g. melting point, heat of melting, crystallization temperature, heat of crystallization, differences between melting point and crystallization temperature) were obtained by DSC(Differential Scanning Calorimeter). The stirring rate effect was investigated during the microencapsulation. It was found that with increasing the stirring rate much smaller microcapule was produced. However, this did not necessarily lead to formation of spherical microcapsule.

Effects of Microcapsules on Mechanical Properties and Thermal Stability of Microcapsule Embedded Polymeric Resins (마이크로캡슐이 폴리머 수지의 기계적 특성 및 열안정성에 미치는 영향)

  • Yoon, Sung Ho;Kim, Min Sik;Jang, Se Yong
    • Composites Research
    • /
    • v.28 no.5
    • /
    • pp.316-321
    • /
    • 2015
  • This study investigated the effects of microcapsules on mechanical properties and thermal stability of the composite material containing self-healing microcapsules. To this end, tensile specimens and flexural specimens containing melamine-urea-formaldehyde (M-U-F) shell walled microcapsules with diameters of $70{\sim}130{\mu}m$ were manufactured. Varying amount of microcapsules in the specimens was considered: 0 wt%, 0.5 wt%, and 1.0 wt%. The tensile and flexural tests were conducted to evaluate mechanical properties of the specimens containing the microcapsules and the thermogravimetric analysis test was performed to evaluate the thermal stability of the specimens containing the microcapsules. The results show that the tensile strength of the specimens was sensitive to the amount of the microcapsules compared to the tensile modulus even though the tensile modulus of the specimens was not significantly affected by the amount of the microcapsules. However, reduction of the tensile strength was not linearly proportional to the amount of microcapsules; similar results were observed in the flexural test. The weight changes of the specimens containing the microcapsules, as a function of temperature, were similar to those specimens without microcapsules. The thermal stability of the specimens was not affected significantly by the microcapsules embedded in the specimens.

Utilization of Waste Bone Powders as Adhesive Fillers for Plywood (합판용 접착제의 충전제로서 폐기 골분의 이용)

  • Ko, Jae Ho;Roh, JeongKwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.528-537
    • /
    • 2015
  • To reuse the waste bone from restaurants or butcher houses, the possibility of using waste bone powder after cooking as a filler for wood adhesives used in manufacturing plywood was investigated. Radiata pine (Pinus radiata D. Don) plywoods were manufactured by using commonly used wood adhesives such as urea-melamine formaldehyde (UMF) resin, urea-formaldehyde (UF) resin, and phenol-formaldehyde (PF) resin and the prepared fillers from cattle bone powder, pig bone powder, and seashell powder. Plywood fabricated by using cattle bone powder, pig bone powder, and seashell powder showed weaker performance in dry and wet glue-joint shear strength and wood failure than those of the plywood with wheat flour. The result showed that it was hard to use only bone powder for the replacement of wheat flour. However, the filler mixed with wheat flour and bone powders showed equivalent dry bonding strength and better water resistance than the wheat flour, indicating that bone powders mixed with wheat flour might be used for the manufacture of plywood. When bone powders were mixed with wheat flour as adhesive fillers the shell powder showed the lowest bonding properties and there was no big difference between the cattle bone powder and the pig bone powder.