Browse > Article
http://dx.doi.org/10.7473/EC.2013.48.3.232

Study on Self-Healing Asphalt Containing Microcapsule  

Kwon, Young-Jin (Department of Polymer Engineering, The University of Suwon)
Hong, Young-Keun (Department of Polymer Engineering, The University of Suwon)
Publication Information
Elastomers and Composites / v.48, no.3, 2013 , pp. 232-240 More about this Journal
Abstract
Microcapsules having healing agent were prepared in which 2,6-dimethylphenol (DMP) as a healing agent forms the core and melamine/formaldehyde resin forms the shell. Microcapsule-contained asphalts showed better mechanical properties than non-contained ones. And as the rest time passed the impact strength of microcapsule-contained asphalt was getting higher than that of asphalt without the microcapsule. As the rest time of 15 days passed, the original strength was restored. This tells that microcapsule-contained asphalt had the ability of self-healing. X-ray photos proved that DMP on asphalt fracture surface, which were burst out of the microcapsules when cracks occurred on asphalt, were polymerized to polyphenyleneoxide and this PPO covered the crack and healed the damage.
Keywords
microcapsule; healing agent; 2,6-dimethylphenol; melamine/formaldehyde resin; healing efficiency;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 E. N. Brown, S. R. White, and N. R. Sottos, "Microcapsule Induced Toughening in a Self-healing Polymer Composite", J. Mater. Sci., 39, 1703 (2004).   DOI   ScienceOn
2 J. D. Rule, E. N. Brown, N. R. Sottos, S. R. White, and J. S. Moore, "Wax-protected Catalyst Microsheres for Efficient Self-healing Materials," Adv. Mater., 17, 205 (2005).   DOI   ScienceOn
3 S. H. Cho, S.R. White, and P.V. Braun, "Self-Healing Polymer Coatings", Adv. Mater.. 21, 645 (2009).   DOI   ScienceOn
4 C. M. Dry, "Self-repairing, Reinforced Matrix Materials", USP 7022179 (2006).
5 J. W. C. Pang and I. P. Bond, "A Hollow Fibre Reinforced Polymer Composite Encompassing Self-healing and Enhanced Damage Visibility", Compos. Sci Technol., 65, 1791 (2005).   DOI   ScienceOn
6 R. S. Trask and I. P. Bond, "Biomimetic Self-healing of Advanced Composite Structures using Hollow Glass Fibres", Smart Mater. Struct., 15, 704 (2006).   DOI   ScienceOn
7 X. Chen, M. A. Dam, K. Ono, A. Mal, H. Shen, S. R. Nutt, K. Sheran, and F. Wudl, "A Thermally Re-mendable Cross-linked Polymeric Material", Science, 295, 1698 (2002).   DOI   ScienceOn
8 F. Wudl, X. Chen, USP 2004014933 (2004).
9 Y. L. Liu and Y. W. Chen, "Thermally Reversible Cross-linked Polyamides with High Toughness and Self-repairing Ability from Maleimide- and Furan- functionalized Aromatic Polyamides", Macromol. Chem. Phys., 208, 224 (2007).   DOI   ScienceOn
10 Y. L. Liu and C. Y. Hsieh, "Crosslinked Epoxy Materials Exhibiting Thermal Remendability and Removability from Multifunctional Maleimide and Furan Compounds", J. Polym. Sci.: Part A: Polym. Chem., 44, 905 (2004).
11 E. B. Murphy, E. Bolanos, C. S. Hamann, F. Wudl, S. R. Nutt, and M. L. Auad, "Synthesis and Characterization of a Single-component Thermally Remendable Polymer Network", Macromolecules, 41, 5203 (2008).   DOI   ScienceOn
12 J. S. Park, K. Takahashi, Z. Guo, Y. Wang, et al., "Towards Development of a Self-healing Composite using a Mendable Polymer and Resistive Heating", J. Compos. Mater., 42, 2869 (2008).   DOI   ScienceOn
13 P. Cordier, F. Tournilhac, C. Soulie-Ziakovic, and L. Leibler, "Self-healing and Thermoreversible Rubber from Supramolecular Assembly", Nature, 451, 977 (2008).   DOI   ScienceOn
14 K. P. Nair, V. Breedveld, and M. Weck, "Complementary Hydrogen-bonded Thermoreversible Polymer Networks with Tunable Properties", Macromolecules, 41, 3429 (2008).   DOI   ScienceOn
15 L. L. Freitas and R. Stadler, "Thermoplastic Elastomers by Hydrogen Bonding. 3", Macromolecules, 20, 2478 (1987).   DOI
16 F. R. Kersey, D. M. Loveless, and S. L. Craig, "A Hybrid Polymer Gel with Controlled Rates of Cross-link Rupture and Self-repair", J. Royal Soc. Interface, 4, 373 (2007).   DOI   ScienceOn
17 P. Jew, J. A. Shimizu, M. Svazic and R. T. Woodhams, "Polyethylene-Modified Bitumen for Paving Applications", J. Appl. Polym. Sci., 31, 2685 (1986).   DOI   ScienceOn
18 A. S. Hay, "Polymerization by Oxidative Coupling: Discovery and Commercialization of PPO and Noryl Resins", J. Polym. Sci.: Part A: Polym. Chem., 36, 505 (1998).   DOI   ScienceOn
19 J. Read and D. Whiteoak, "The Shell Bitumen Handbook", Shell, London (2003).
20 X. Lu and U. Isacsson, "Compatibility and Storage Stability of SBS Copolymer Modified Bitumen", Mater. Struct., 30, 618 (1997).   DOI
21 O. Gonzalez, M. E. Munoz, A. Santamaria, M. Garcia-Morales, F. J. Navarro, and P. Partal, "Rheology and Stability of Bitumen/EVA blends", Eur. Polym. J., 40, 2365 (2004).   DOI   ScienceOn
22 G. Polacco, S. Berlincioni, D. Biondi, J. Stastna, and L. Zanzotto, "Asphalt Modification with Different Polyethylene-Based Polymers", Eur. Polym. J., 41, 2831 (2005).   DOI   ScienceOn
23 G. Wen, Y. Zhang, Y. Zhang, K. Sun, and Z. Chen, "Vulcanization Characteristics of Asphalt/SBS Blends in the Presence of Sulfur", J. Appl. Polym. Sci., 82, 989 (2001).   DOI   ScienceOn
24 J. S. Chen and C. C. Huang, "Fundamental Characterization of SBS-modified Asphalt Mixed with Sulfur", J. Appl. Polym. Sci., 103, 2817 (2007).   DOI   ScienceOn
25 A. Adedeji, T. Grunfelder, F. S. Bates, and C. W. Macosko, "Asphalt Modified by SBS Triblock Copolymer: Structures and Properties", Polym. Eng. Sci., 36, 1707 (1996).   DOI   ScienceOn
26 Z. Li and J. Wu, "Potential Distribution Theorem of the Polymer-induced depletion between Colloidal Particles", J. Chem. Phys., 126, 144904 (2007).   DOI   ScienceOn
27 S. Tyagi, J. Y. Lee, G. A. Buxton, and A. C. Balazs, "Using Nanocomposite Coating to Heal Surface Defects", Macromolecules, 37, 9160 (2004).   DOI   ScienceOn
28 C. Gogelein, G. Nagele, J. Buitenhuis, R. Tuinier, and J. K. G. Dhont, "Polymer Depletion-driven Cluster Aggregation and Initial Phase Separation in Charged Nanosized Colloids", J. Chem. Phys., 130, 204905 (2009).   DOI   ScienceOn
29 S. Ramakrishnan, M. Fuchs, K.S. Schweizer, and C.F. Zukoski, "Entropy-driven Phase Transitions in Colloid-Polymer Suspensions", J. Chem. Phys., 116, 2201 (2002).   DOI   ScienceOn
30 J. Y. Lee, G. A. Buxton, and A. C. Balazs, "Using Nanoparticles to Create Self-healing Composites", J. Chem. Phys., 1121, 5531 (2004).
31 J. Y. Lee, Q. L. Zhang, T. Emricksas, and A. J. Crosby, "Nanoparticle Alignment and Repulsion during Failure of Glassy Polymer Nanocomposites", Macromolecules, 39, 7392 (2006).   DOI   ScienceOn
32 S. R. White, N. R. Sottos, P. H. Geubelle, J. S. Moore, M. R. Kessler, S. R. Sriram, E. N. Brown, and S. Viswanathan, "Autonomic Healing of Polymer Composites", Nature, 409, 794 (2001).   DOI   ScienceOn
33 E. N. Brown, M. R. Kessler, N. R. Sottos, and S. R. White, "In-situ Poly(urea-formaldehyde) Microencapsulation of Dicyclopentadiene", J. Microencapsulation, 20, 719 (2003).   DOI
34 Self-healing Material, Wikipedia.
35 J. H. Collins and M. G. Bouldin, "Long and Short Term Stability of Straight and Polymer Modified Asphalts", Rubber World, 206, 32 (1992).
36 Top 10 Most Promising Technology Trends 2013, from the World Economic Forum, Google, posted Feb 14, 2013.
37 S. Y. Lee, S. H. Mun, and Y. K. Hong, "Modification of Asphalt by in-situ Polymerization", Elast. Compos., 46, 257 (2011).   과학기술학회마을
38 W. A. Butte, C. C. Price, and R. E. Hughes, "Crystalline Poly(2,6-zylenol)", J. Polym. Sci., 61, S28 (1962).   DOI
39 F. E. Karasz and J. M. O'Reilly, "Thermal Properties of Poly(2,6-dimethyl phenylene ether)", J. Polym. Sci., Part B: Polym. Lett., 3, 561 (1965).   DOI