Browse > Article
http://dx.doi.org/10.14478/ace.2014.1112

Preparation and Characterization of Functional Microcapsules Containing Suspensions of Conducting Materials  

Ihm, DaeWoo (Department of Chemical Engineering, Hoseo University)
Kwon, Won Ho (Department of Chemical Engineering, Hoseo University)
Publication Information
Applied Chemistry for Engineering / v.26, no.1, 2015 , pp. 40-46 More about this Journal
Abstract
Microcapsules containing the suspension of conducting materials such as carbon nanotube (CNT) or polyaniline (PANI) were prepared by in-situ polymerization of melamine and formaldehyde. Stable microcapsules were prepared and the mean diameter of the observed microcapsules was in the range of $10-20{\mu}m$. The surface morphology and chemical structure of microcapsules were investigated using optical microscope (OM), scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FT-IR). The thermal properties of samples were investigated by thermogravimetric analysis (TGA). The conductivity of ruptured microcapsule containing the suspension of CNTs or PANIs in tetrachloroethylene and Isopar-G was measured. As the amount of CNTs and PANIs in the core of microcapsules increased, the measured current increased. Conductivity measurement results suggest that poly (melamine-formaldehyde) based core-shell microcapsules could be applied to self-healing electronic materials systems, where CNTs or PANIs bridge a broken circuit upon release.
Keywords
polyaniline; carbon nanotube; poly(melamine-formaldehyde); microcapsules; self-healing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Thies, A survey of microencapsulation technology, In: S. Benita (ed.), Microencapsulation: methods and industrial applications, 1-19, Marcel Dekker, NY, USA (1996).
2 S. K. Ghosh, Functional coatings by polymer microencapsulation, 12-25, Wiley-VCH, Hoboken, USA (2006).
3 T. Kondo and M. Koish, Microcapsule, 112-140, Sankyo, Tokyo, Japan (1987).
4 A. Shulkin and H. D. H. Stover, Polymer microcapsules by interfacial polyaddition between styrene-maleic anhydride copolymers and amines, J. Membr. Sci., 209, 421-432 (2002).   DOI   ScienceOn
5 Y. I. Huang, Y. H. Cheng, C. C. Yu, T. R. Tsai, and T. M. Cham, Microencapsulation of extract containing shikonin using gelatin-acacia coacervation method: A formaldehyde-free approach, Colloids Surf. B. Biointerfaces, 58, 290-297 (2007).   DOI   ScienceOn
6 E. N. Brown, M. R. Kessler, N. R. Sottos, and S. R. White, In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene, J. Microencapsul., 20, 719-730 (2003).   DOI
7 J. M. Jacobson, P. S. Drazaic, and I. D. Morrison, Electrophoretic displays using nanoparticles, US Patent, 6,323,989 (2001).
8 J. D. Albert, B. Comiskey, J. M. Jacobson. L. Hang, A. Loxley, R. Feeney, P. S. Drazaic, and I. D. Morrison, A multi-color, encapsulated electrophoretic displays and materials for making the same, US Patent, 6,017,584 (2002).
9 S. R. White, N. R. Sottos, P. H. Geubelle, J. S. Moore, M. R. Kessler, S. R.Sriram, E. N. Brown, and S. Viswanathan, Autonomic healing of polymer composites, Nature, 409, 794-797 (2001).   DOI   ScienceOn
10 S. H. Cho, H. M. Andersson, S. R. White, N. R. Sottos, and P. V. Braun, Polydimethylsiloxane-Based Self-Healing Materials, Adv. Mater., 18, 997-1000 (2006).   DOI   ScienceOn
11 S. R. White, M. M. Caruso, and J. S. Moore, Autonomic Healing of polymers, MRS Bull., 33, 766-769 (2008).   DOI
12 C. Dry, Procedures developed for self-repair of polymer matrix composite materials, Composite Structures, 35, 263-269 (1996).   DOI   ScienceOn
13 M. R. Kessler and S. R. White, Self-activated healing of delamination damage in woven composites, Composites: Part A, 32, 683-699 (2001).
14 S. Ijima, Helical microtubules of graphitic carbon, Nature, 354, 56-58 (1991).   DOI
15 M. Pumera, Carbon nanotube biosensors based on electrochemical detection, In: K. Balasubramanian and M. Burghard (eds.), Carbon Nanotubes, 205-212, Humana Press, NY, USA (2010).
16 J. P. Salvetat, G. Desarmot, C. Gauthier, and P. Poulin, J.-P. Salvetat, G. D, Mechanical properties of individual nanotubes and composites, In : A. Loiseau, P. Launois, P. Petit, S. Roche J.-P. Salvetat (eds.), Understanding Carbon Nanotubes, 459-487, Springer-Verlag, Berlin, Germany (2006).
17 J. Y. Kim, M. H. Kwon, Y. K. Min, S. Kwon, and D. W. Ihm, Self-assembly and crystalline growth of Poly(3,4-ethylenedioxythiophene) nanofilms, Adv. Mater., 19, 3501-3506 (2007).   DOI   ScienceOn
18 E. T. Thostenson and T.-W. Chou, Carbon nanotube networks: Sensing of distributed strain and damage for life prediction and self healing, Adv. Mater., 18, 2837-2841 (2006).   DOI   ScienceOn
19 Z. Yao, H. W. Ch. Poatma, L. Balents, and C. Dekker, Carbon nanotube intramolecular junctions, Nature, 402, 273-276 (1999).   DOI
20 J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Dai, Nanotube molecular wires as chemical sensors, Science, 287, 622-625 (2000).   DOI   ScienceOn
21 M. Wan, Conducting Polymers with Micro or Nanometer Structure, 16-21, Springer, NY, USA (2008).
22 M. Keller, Encapsulation-based self-healing polymers and composites, In: W.Hayes, and B.W.Greenland (eds.), Healable Polymer Systems, 16-57, Royal Society of Chemistry, Cambridge, UK (2013).
23 S. A. Odom, M. M. Caruso, A. D. Finke, A. M. Prokup, J. A. Ritchey, J. H. Leonard, S. R. White, N. R. Sottos, and J. S. Moore, Restoration of conductivity with TTF-TCNQ charge-transfer salts, Adv. Funct. Mater., 20, 1721-1727 (2010).   DOI   ScienceOn
24 S. A. Odom, S. Chayanupatkul, B. J. Blaiszik, O. Zhao, A. C. Jackson, P. V. Braun, N. R. Sottos, S. R. White, and J. S. Moore, A self-healing conducting ink, Adv. Mater., 24, 2578-2581 (2012).   DOI   ScienceOn
25 M. M. Caruso, S. R. Schelkopf, A. C. Jackson, A. M. Landry, P. V. Braun, and J. S. Moore, Microcapsules containing suspensions of carbon nanotubes, J. Mater. Chem., 19, 6093-6096 (2009).   DOI   ScienceOn
26 M. S. Kumar, S. H. Lee, T. Y. Kim, T. H. Kim, S. M. Song, J. W. Yang, K. S. Nahm, and E. K. Suh, DC electric field assisted alignment of carbon nanotubes on metal electrodes, Solid-State Electronics, 47, 2075-2080 (2003).   DOI   ScienceOn
27 Y. H. Lee, C. A. Kim, W. H. Jang, H. J. Choi, and M. S. Son, Synthesis and electrorheological characteristics of microencapsulated polyaniline particles with melamine-formaldehyde resins, Polymer, 42, 8277-8283 (2001).   DOI   ScienceOn
28 V. G. Kulkami, L. D. Campbell, and W. R. Mathew, Thermal stability of polyaniline, Synth. Met., 30, 321-325 (1989).   DOI   ScienceOn
29 P. V. Kamat, K. G. Thomas, S. Barazzouk, G. Girishkumar, K. Vinodgopal, and D. Meisel, Self-assembled linear bundles of single wall carbon nanotubes and their alignment and deposition as a film in a dc field, J. Am. Chem. Soc., 126, 10757-10762 (2004).   DOI   ScienceOn
30 S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, and E. A. Grulke, Anomalous thermal conductivity enhancement in nanotube suspensions, Appl. Phys. Lett., 79, 2252-2254 (2001).   DOI   ScienceOn