• 제목/요약/키워드: shell thickness

검색결과 744건 처리시간 0.023초

Closed form solution for displacements of thick cylinders with varying thickness subjected to non-uniform internal pressure

  • Eipakchi, H.R.;Rahimi, G.H.;Esmaeilzadeh Khadem, S.
    • Structural Engineering and Mechanics
    • /
    • 제16권6호
    • /
    • pp.731-748
    • /
    • 2003
  • In this paper a thick cylindrical shell with varying thickness which is subjected to static non-uniform internal pressure is analyzed. At first, equilibrium equations of the shell have been derived by the energy principle and by considering the first order theory of Mirsky-Herrmann which includes transverse shear deformation. Then the governing equations which are, a system of differential equations with varying coefficients have been solved analytically with the boundary layer technique of the perturbation theory. In spite of complexity of modeling the conditions near the boundaries, the method of this paper is very capable of providing a closed form solution even near the boundaries. Displacement predictions are in a good agreement with the calculated finite elements and other analytical results. The convergence of solution is very fast and the amount of calculations is less than the Frobenius method.

임의의 곡률과 변두께를 갖는 두꺼운 축대칭 회전 셸의 3차원적 장방정식, 운동 방정식, 에너지 범함수 (Three-Dimensional Field Equations, Equations of Motion, and Energy Functionals for Thick Shells of Revolution with Arbitrary Curvature and Variable Thickness)

  • 강재훈;이은택;양근혁
    • 소음진동
    • /
    • 제11권1호
    • /
    • pp.156-166
    • /
    • 2001
  • This work uses tensor calculus to derive a complete set of three-dimensional field equations well-suited for determining the behavior of thick shells of revolution having arbitrary curvature and variable thickness. The material is assumed to be homogeneous, isotropic and linearly elastic. The equations are expressed in terms of coordinates tangent and normal to the shell middle surface. The relationships are combined to yield equations of motion in terms of orthogonal displacement components taken in the meridional, normal and circumferential directions. Strain energy and kinetic energy functionals are also presented. The equations of motion and energy functionals may be used to determine the static or dynamic displacements and stresses in shells of revolution, including free and forced vibration and wave propagation.

  • PDF

산란계 사료내 Sea Shell 첨가로 인한 난각질 향상에 미치는 효과 (Effects of Sea Shell Supplementation on Egg Quality in Diets of Laying Hens)

  • 권오석;김인호;홍종옥;황일환;홍의철;이상환
    • 한국가금학회지
    • /
    • 제27권3호
    • /
    • pp.221-226
    • /
    • 2000
  • This experiment was conducted to determine the effect of replacing limestone by sea shell on digestibility, egg strength and thickness, Ca and P of serum and Ca and P of tibia in layer hens. A total 54 brown layers was assigned to the treatments. There were six layers per replicate with three replicate per treatment. Treatments were layer diet with 7.5% limestone as control, 7.0% limestone and 0.5% sea shell in diet(SS0.5) and 6.5% limestone and 1.0% sea shell in diet(SS1.0). Digestibility of DM was significantly difference between SS0.5 and SS1.0(P〈0.05). Digestibilities of Ca and P were not affected by treatments(P〉0.05), however, SS1.0 tended to increase Ca and P digestibility compared to control. Egg thickness and egg strength were no differences among the treatments(P〉0.05). Differences of initial and finial period on Ca of plasma were significantly affected in the a.m. between SS0.5 and SS1.0(P〈0.05). However, there was no difference in Ca of plasma in the p.m. among the treatments and Ca of plasma in control had a tendency to decrease in the p.m. compared to that of treatments(P〉0.05). Ca of tibia was significantly increased by SS1.0 compared to control(P〈0.05). However, there was no difference in P of tibia among the treatments(P〉0.05). Based on these results, dietary supplemental sea shell mat have a role to improve the egg quality of layer hens.

  • PDF

철근콘크리트 원통 SHELL TANK 에 관한 최적설계 (The Optimum Design of Reinforced Concrete Cylindrical Shell Tanks)

  • 최열;강문명
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1992년도 가을 학술발표회 논문집
    • /
    • pp.61-66
    • /
    • 1992
  • The present paper deals with the optimum design of reinforced concrete cylindrical shell tanks in according to ACI 318-89 code. The purpose of this investigation is to find the optimum values of the steel ratio and the effective thickness of reinforced concrete cylindrical shell tanks. The analysts is carried out using a simple computer programming, SMAP(segmented matrix analysis package). The optimization is carried out using GINO programming. Optimum results for cylindrical shell tanks with uniform, stepwise and piecewise linealy varying thicknesses are presented.

  • PDF

열, 기계 하중을 고려한 지그재그 고차 복합재 쉘 이론 (Higher Order Zig-Zag Theory for Composite Shell under Thermo-mechanical load)

  • 오진호;조맹효
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.217-224
    • /
    • 2005
  • A higher order zig-zag shell theory is developed to refine the predictions of the mechanical and thermal behaviors partially coupled. The in-plane displacement fields are constructed by superimposing linear zig-zag field to the smooth globally cubic varying field through the thickness. Smooth parabolic distribution through the thickness is assumed in the out-of-plane displacement in order to consider transverse normal deformation and stress. The layer-dependent degrees of freedom of displacement fields are expressed in terms of reference primary degrees of freedom by applying interface continuity conditions as well as bounding surface conditions of transverse shear stresses. Thus the proposed theory has only seven primary unknowns and they do not depend upon the number of layers. In the description of geometry and deformation of shell surface, all rigorous exact expressions are used. Through the numerical examples of partially coupled analysis, the accuracy and efficiency of the present theory are demonstrated. The present theory is suitable in the predictions of deformation and stresses of thick composite shell under mechanical and thermal loads combined.

  • PDF

Relative Parameter Contributions for Encapsulating Silica-Gold Nanoshells by Poly(N-isopropylacrylamide-co-acrylic acid) Hydrogels

  • Park, Min-Yim;Lim, Se-Ra;Lee, Sang-Wha;Park, Sang-Eun
    • Macromolecular Research
    • /
    • 제17권5호
    • /
    • pp.307-312
    • /
    • 2009
  • Core-shell hydrogel nanocomposite was fabricated by encapsulating a silica-gold nanoshell (SGNS) with poly(N-isopropylacrylamide-co-acrylic acid) (PNIPAM-co-AAc) copolymer. The oleylamine-functionalized SONS was used as a nanotemplate for the shell-layer growth of hydrogel copolymer. APS (ammonium persulfate) was used as a polymerization initiator to produce a hydrogel-encapsulated SGNS (H-SGNS). The amounts of NIPAM (N-isopropylacrylamide) monomers were optimized to reproduce the hydrogel-encapsulated SGNS. The shell-layer thickness was increased with the increase of polymerization time and no further increase in the shell-layer thickness was clearly observed over 16 h. H-SGNS exhibited the systematic changes of particle size corresponding to the variation of pH and temperature, which was originated from hydrogen-bonding interaction between PNIPAM amide groups and water, as well as electrostatic forces attributed by the ionization of carboxylic groups in acrylic acid.

복합재료 원통쉘의 진동, 좌굴강도, 충격강도 특성 및 그의 설계최적화에 관한 연구 (A Study on the Design Optimization of Composite cylindrical shells with Vibration, Buckling Strength and Impact Strength Characteristics)

  • 이영신;전병희;오재문
    • 한국자동차공학회논문집
    • /
    • 제5권4호
    • /
    • pp.48-69
    • /
    • 1997
  • The use of advanced composite materials in many engineering structures has steadily increased during the last decade. Advanced composite materials allow the design engineer to tailor the directional stiffness and the strength of materials as required for the structures. Design variables to the design engineer include multiple material systems. ply orientation, ply thickness, stacking sequence and boundary conditions, in addition to overall structural design parameters. Since the vibration and impact strength of composite cylindrical shell is an important consideration for composite structures design, the reliable prediction method and design methodology should be required. In this study, the optimum design of composite cylindrical shell for maximum natural frequency, buckling strength and impact strength are developed by analytic and numerical method. The effect of parameters such as the various composite material orthotropic properties (CFRP, GFRP, KFRP, Al-CFRP hybrid), the stacking sequences, the shell thickness, and the boundary conditions on structural characteristics are studied extensively.

  • PDF

2MW급 풍력발전기 타워 쉘 최적 설계 (Research for 2MW Wind Turbine Tower Shell Design Optimization)

  • 홍혁수;박진일;방조혁;류지윤;김두훈
    • 신재생에너지
    • /
    • 제2권4호
    • /
    • pp.19-26
    • /
    • 2006
  • Tower shell design is very important because tower takes about 20% of overall wind turbine cost. This paper contains procedure of tower analysis and tower shell thickness optimization concept. Some of requirements like eigenfrequency and buckling evaluated by numerical method. But strength and fatigue can be derived by mathematical method simply. Using this procedure, tower shell thickness can be designed without repetition of complicated calculation.

  • PDF

우산형 쉘 지붕의 보강재 보강효과 (Reinforcing Effects of Umbrella-type Shell Roofs with Stiffeners)

  • 손병직;정대석;이규환
    • 한국안전학회지
    • /
    • 제22권3호
    • /
    • pp.45-50
    • /
    • 2007
  • In this study, reinforcing effects of umbrella-type shell roofs structures such as stadium, exhibition, auditorium and museum are analyzed. Umbrella-type shell roofs treated in this study are practical shapes of conical shells. The objective of this study is to analyze reinforcing effects of umbrella-type shell roofs with stiffeners. Various locations of stiffeners, that is, edge ring A, B, center ring, junction stringer and center stringer are presented and the effects of reinforcement is examined. Also, the reduction effects of roofs thickness by stiffeners are examined. It is shown that the thickness of roofs can be reduced about $20{\sim}30%$ by junction stringer and more than 60% by edge ring A.

Dynamic results of GNPRC sandwich shells

  • E. Mohammad-Rezaei Bidgoli;M. Arefi
    • Steel and Composite Structures
    • /
    • 제48권3호
    • /
    • pp.263-273
    • /
    • 2023
  • This paper investigates dynamic characteristics of a graphene nanoplatelets reinforced composite (GNPRC) sandwich doubly curved shell based on the first-order shear deformation theory (FSDT) and Hamilton's principle. The sandwich doubly curved shell is fabricated from a core made of honeycomb materials sandwiched by composite GNPs reinforced face-sheets. Effective materials properties of composite face-sheets are assumed to vary based on Halpin-Tsai micromechanical models and rule of mixture. Furthermore, the material properties of honeycomb core are estimated using Gibson's formula. The fundamental frequencies of the shell are computed with changes of main geometrical and material properties such as amount and distribution type of graphene nanoplatelets, side length ratio, thickness to length ratio of and side length ratio of honeycomb. The Navier's technique is presented to obtain responses. Accuracy and trueness of the present model and analytical solution is confirmed through comparison of the results with available results in literature. It is concluded that an increase in thickness to length ratio yields a softer core with lower natural frequencies. Furthermore, increase in height to length ratio leads to significant decrease in natural frequencies.