DOI QR코드

DOI QR Code

Dynamic results of GNPRC sandwich shells

  • E. Mohammad-Rezaei Bidgoli (Department of Solid Mechanic, Faculty of Mechanical Engineering, University of Kashan) ;
  • M. Arefi (Department of Solid Mechanic, Faculty of Mechanical Engineering, University of Kashan)
  • Received : 2021.09.27
  • Accepted : 2023.07.26
  • Published : 2023.08.10

Abstract

This paper investigates dynamic characteristics of a graphene nanoplatelets reinforced composite (GNPRC) sandwich doubly curved shell based on the first-order shear deformation theory (FSDT) and Hamilton's principle. The sandwich doubly curved shell is fabricated from a core made of honeycomb materials sandwiched by composite GNPs reinforced face-sheets. Effective materials properties of composite face-sheets are assumed to vary based on Halpin-Tsai micromechanical models and rule of mixture. Furthermore, the material properties of honeycomb core are estimated using Gibson's formula. The fundamental frequencies of the shell are computed with changes of main geometrical and material properties such as amount and distribution type of graphene nanoplatelets, side length ratio, thickness to length ratio of and side length ratio of honeycomb. The Navier's technique is presented to obtain responses. Accuracy and trueness of the present model and analytical solution is confirmed through comparison of the results with available results in literature. It is concluded that an increase in thickness to length ratio yields a softer core with lower natural frequencies. Furthermore, increase in height to length ratio leads to significant decrease in natural frequencies.

Keywords

References

  1. Alankaya, V. and Oktem, A.S. (2016), "Static analysis of laminated and sandwich composite doubly-curved shallow shells", Steel. Compos. Struct., 20(5), 1043-1069. http://dx.doi.org/10.12989/scs.2016.20.5.1043. 
  2. Arefi, M., Kiani Moghaddam, S., Mohammad-Rezaei Bidgoli, E., Kiani, M. and Civalek, O. (2020), "Analysis of graphene nanoplatelet reinforced cylindrical shell subjected to thermomechanical loads", Compos. Struct., 255, 112924. https://doi.org/10.1016/j.compstruct.2020.112924. 
  3. Arefi, M., Mohammad-Rezaei Bidgoli, E., Dimitri, R., Bacciocchi, M. and Tornabene, F. (2019), "Nonlocal bending analysis of curved nanobeams reinforced by graphene nanoplatelets", Compos Part B Eng., 166, 1-12. https://doi.org/10.1016/j.compositesb.2018.11.092. 
  4. Arefi, M., Mohammad-Rezaei Bidgoli, E., Dimitri, R. and Tornabene, F. (2018), "Free vibrations of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets", Aero. Sci. Tech., 81, 108-117. https://doi.org/10.1016/j.ast.2018.07.036. 
  5. Arefi, M., Mohammad-Rezaei Bidgoli, E. and Zenkour, A.M. (2018), "Size-dependent free vibration and dynamic analyses of a sandwich microbeam based on higher-order sinusoidal shear deformation theory and strain gradient theory", Smart Struct Sys., 22(1), 27-40. https://doi.org/10.12989/sss.2018.22.1.027. 
  6. Arefi, M. Kiani, M. and Zenkour, A.M. (2020a), "Size-dependent free vibration analysis of a three-layered exponentially graded nano-/micro-plate with piezomagnetic face sheets resting on Pasternak's foundation via MCST", J. Sandw. Struct. Mater., 22(1), 55-86. https://doi.org/10.1177/1099636217734279. 
  7. Arefi, M. Kiani, M. and Zamani, M.H. (2020b), "Nonlocal strain gradient theory for the magneto-electro-elastic vibration response of a porous FG-core sandwich nanoplate with piezomagnetic face sheets resting on an elastic foundation", J. Sandw. Struct. Mater., 22(7), 2157-2185. https://doi.org/10.1177/1099636218795378. 
  8. Adnan, Zaidi, S.Z.A., Khan, U., Ahmed, N., Mohyud-Din, S.T., Chu, Y.M. and Nisar, K.S. (2020), "Impacts of freezing temperature based thermal conductivity on the heat transfer gradient in nanofluids: Applications for a curved Riga surface", Molecules, 25(9), 2152. https://doi.org/10.3390/molecules25092152. 
  9. Arefi, M. and Rahimi, G.H. (2014), "Application of shear deformation theory for two dimensional electro-elastic analysis of a FGP cylinder", Smart. Struct. Syst., 13(1), 1-24. https://doi.org/10.12989/sss.2014.13.1.001. 
  10. Rahimi, G.H., Arefi, M. and Khoshgoftar, M.J. (2012), "Electro elastic analysis of a pressurized thick-walled functionally graded piezoelectric cylinder using the first order shear deformation theory and energy method", Mechanika, 18(3), 292-300. https://doi.org/10.5755/j01.mech.18.3.1875. 
  11. Arefi, M. and Zenkour A.M. (2017a), "Transient analysis of a three-layer microbeam subjected to electric potential", Int. J. Smart. Nano. Mater., 8(1), 20-40. https://doi.org/10.1080/19475411.2017.1292967. 
  12. Arefi, M., Bidgoli, E.M.-R., Dimitri, R., Tornabene, F. and Reddy, J.N. (2019), "Size-dependent free vibrations of FG polymer composite curved nanobeams reinforced with graphene nanoplatelets resting on Pasternak foundations", Appl. Sci., 9(8), 1580. https://doi.org/10.3390/app9081580. 
  13. Arefi, M. and Allam, M.N.M. (2015), "Nonlinear responses of an arbitrary FGP circular plate resting on foundation", Smart. Struct. Syst. 16(1), 81-100. https://doi.org/10.12989/sss.2015.16.1.081. 
  14. Arefi, M. and Rahimi, G.H. (2012a), "Three-dimensional multi-field equations of a functionally graded piezoelectric thick shell with variable thickness, curvature and arbitrary nonhomogeneity", Acta. Mech., 223(1), 63-79. https://doi.org/10.1007/s00707-011-0536-5. 
  15. Arefi, M. and Rahimi, G.H. (2012b), "Comprehensive thermoelastic analysis of a functionally graded cylinder with different boundary conditions under internal pressure using first order shear deformation theory", Mechanika, 18(1), 5-13. https://doi.org/10.5755/j01.mech.18.1.1273. 
  16. Arefi, M. and Rahimi, G.H. (2010), "Thermo elastic analysis of a functionally graded cylinder under internal pressure using first order shear deformation theory", Sci. Res. Essays., 5(12), 1442-1454. https://doi.org/10.5897/SRE.9000953. 
  17. Avila, A.F., Eduardo, A.C. and Neto, A.S. (2011), "Vibrational analysis of graphene based nanostructures", Comput. Struct., 89(11-12), 878-892. https://doi.org/10.1016/j.compstruc.2011.02.017. 
  18. Barati, M.R. and Zenkour, A.M. (2019), "Vibration analysis of functionally graded graphene platelet reinforced cylindrical shells with different porosity distributions", Mech. Adv. Mater. Struct., 26(18), 1580-1588. https://doi.org/10.1080/15376494.2018.1444235. 
  19. Burlayenko, V.N. and Sadowski, T. (2009), "Analysis of structural performance of sandwich plates with foam-filled aluminum hexagonal honeycomb core", Comput. Mater. Sci., 45, 658-662. https://doi.org/10.1016/j.commatsci.2008.08.018. 
  20. Bai, X., Shi, H., Zhang, K., Zhang, X. and Wu, Y. (2022), "Effect of the fit clearance between ceramic outer ring and steel pedestal on the sound radiation of full ceramic ball bearing system", J. Sound. Vib., 529, 116967. https://doi.org/10.1016/j.jsv.2022.116967 
  21. Chen, L., Zhao, Y., Li, M., Li, L., Hou, L. and Hou, H. (2021). "Reinforced AZ91D magnesium alloy with thixomolding process facilitated dispersion of graphene nanoplatelets and enhanced interfacial interactions", Mater. Sci. Eng.: A, 804, 140793. doi: https://doi.org/10.1016/j.msea.2021.140793. 
  22. Chen, L., Zhao, Y., Jing, J. and Hou, H. (2023), "Microstructural evolution in graphene nanoplatelets reinforced magnesium matrix composites fabricated through thixomolding process", J. Alloy. Compound., 940, 168824. https://doi.org/10.1016/j.jallcom.2023.168824. 
  23. Chakravorty, D., Bandyopadhyay, J.N. and Sinha, P.K. (1996), "Finite element free vibration analysis of doubly curved laminated composite shells", J. Sound. Vib., 191(4), 491-504. https://doi.org/10.1006/jsvi.1996.0136. 
  24. Dai, Z., Xie, J. and Jiang, M. (2023), "A coupled peridynamics-smoothed particle hydrodynamics model for fracture analysis of fluid-structure interactions", Ocean. Eng., 279, 114582. https://doi.org/10.1016/j.oceaneng.2023.114582. 
  25. Du, S., Xie, H., Yin, J., Fang, T., Zhang, S., Sun, Y. and Zheng, R. (2023), "Competition pathways of energy relaxation of hot electrons through coupling with optical, surface, and acoustic phonons", J. Phys. Chem. C, 127(4), 1929-1936. https://doi.org/10.1021/acs.jpcc.2c07791. 
  26. Dai, Z., Zhang, L., Bolandi, S.Y. and Habibi, M. (2021), "On the vibrations of the non-polynomial viscoelastic composite open-type shell under residual stresses", Compos. Struct., 263, 113599. https://doi.org/10.1016/j.compstruct.2021.113599. 
  27. Dindarloo, M.H. and Zenkour, A.M. (2020), "Nonlocal strain gradient shell theory for bending analysis of FG spherical nanoshells in thermal environment", Eur. Phys. J. Plus., 135, 785. https://doi.org/10.1140/epjp/s13360-020-00796-9. 
  28. Guo, H., Yang, T., Zur, K.K., and Reddy, J.N. (2021), "On the flutter of matrix cracked laminated composite plates reinforced with graphene nanoplatelets", Thin Wall. Struct., 158, 107161. https://doi.org/10.1016/j.tws.2020.107161. 
  29. Guo, J., Shi, D., Wang, Q., Tang, J. and Shuai, C. (2018), "Dynamic analysis of laminated doubly-curved shells with general boundary conditions by means of a domain decomposition method", Int. J. Mech. Sci., 138-139, 159-186. https://doi.org/10.1016/j.ijmecsci.2018.02.004. 
  30. Gholami, R. and Ansari., R. (2019), "Nonlinear stability and vibration of pre/post-buckled multilayer FG-GPLRPC rectangular plates", Appl. Math. Model., 65, 627-660. https://doi.org/10.1016/j.apm.2018.08.038. 
  31. Hou, F., Wu, S., Moradi, Z. and Shafiei, N. (2022), "The computational modeling for the static analysis of axially functionally graded micro-cylindrical imperfect beam applying the computer simulation", Eng. Comput., 38(Suppl 4), 3217-3235. https://doi.org/10.1007/s00366-021-01456-x. 
  32. Huang, K., Guo, H., Qin, Z., Cao, S. and Chen, Y. (2020), "Flutter analysis of laminated composite quadrilateral plates reinforced with graphene nanoplatelets using the element-free IMLS-Ritz method", Aero. Sci. Tech., 103, 105915. https://doi.org/10.1016/j.ast.2020.105915. 
  33. Huang, X., Hao, H., Oslub, K., Habibi, M. and Tounsi, A. (2022), "Dynamic stability/instability simulation of the rotary size-dependent functionally graded microsystem", Eng. Comput., 38(Suppl 5), 4163-4179. https://doi.org/10.1007/s00366-021-01399-3. 
  34. Huang, X., Zhang, Y., Moradi, Z. and Shafiei, N. (2022), "Computer simulation via a couple of homotopy perturbation methods and the generalized differential quadrature method for nonlinear vibration of functionally graded non-uniform micro-tube", Eng. Comput., 38(Suppl 3), 2481-2498. https://doi.org/10.1007/s00366-021-01395-7. 
  35. Huo, J., Zhang, G., Ghabussi, A. and Habibi, M. (2021), "Bending analysis of FG-GPLRC axisymmetric circular/annular sector plates by considering elastic foundation and horizontal friction force using 3D-poroelasticity theory", Compos. Struct., 276, 114438. https://doi.org/10.1016/j.compstruct.2021.114438. 
  36. Huang, Z., Luo, P., Zheng, H., Lyu, Z. and Ma, X. (2023), "Novel one-dimensional V3S4@NC nanofibers for sodium-ion batteries", J. Phys. Chem. Solids., 172, 111081. https://doi.org/10.1016/j.jpcs.2022.111081 
  37. Hao, R., Lu, Z., Ding, H. and Chen, L. (2022), "Orthogonal six-DOFs vibration isolation with tunable high-static-low-dynamic stiffness: Experiment and analysis", Int. J. Mech. Sci., 222, 107237. https://doi.org/10.1016/j.ijmecsci.2022.107237. 
  38. Ibrahim, M. Saeed, T. and Chu, Y-M (2021), "Comprehensive study concerned graphene nano-sheets dispersed in ethylene glycol: Experimental study and theoretical prediction of thermal conductivity", Powder. Tech., 386, 51-59. https://doi.org/10.1016/j.powtec.2021.03.028. 
  39. Ijaz Khan, M., Kadry, S., Chu, Y.M. and Waqas, M. (2021), "Modeling and numerical analysis of nanoliquid (titanium oxide, graphene oxide) flow viscous fluid with second order velocity slip and entropy generation", Chin. J. Chem. Eng., 31, 17-25. https://doi.org/10.1016/j.cjche.2020.08.005. 
  40. Jiao, J., Ghoreishi, S. M., Moradi, Z. and Oslub, K. (2021), "Coupled particle swarm optimization method with genetic algorithm for the static-dynamic performance of the magneto-electro-elastic nanosystem", Eng. Comput., 1-15. https://doi.org/10.1007/s00366-021-01391-x. 
  41. Kiani, Y., Shakeri, M. and Eslami, M.R. (2012), "Thermoelastic free vibration and dynamic behavior of an FGM doubly curved panel via the analytical hybrid Laplace-Fourier transformation", Acta. Mech., 223, 1199-1218. https://doi.org/10.1007/s00707-012-0629-9. 
  42. Kumar, V., Madhukesh, J.K., Jyothi, A.M., Prasannakumara, B.C., Khan, M.I. and Chu, Y.M. (2021), "Analysis of single and multi-wall carbon nanotubes (SWCNT/MWCNT) in the flow of Maxwell nanofluid with the impact of magnetic dipole", Computat. Theoretic. Chemist., 1200, 113223. https://doi.org/10.1016/j.comptc.2021.113223. 
  43. Lee, S.B., Lee, C.Y. and Hodges, D.H. (2020), "On the mechanics of composite sandwich plates with three-dimensional stress recovery", Int. J. Eng. Sci., 157, 103406. https://doi.org/10.1016/j.ijengsci.2020.103406. 
  44. Li, H., Pang, F., Miao, X., Du, Y. and Tian, H. (2018a), "A semi-analytical method for vibration analysis of stepped doubly-curved shells of revolution with arbitrary boundary conditions", Thin Wall. Struct., 129, 125-144. https://doi.org/10.1016/j.tws.2018.03.026. 
  45. Li, H., Pang, F., Wang, X., Du, Y. and Chen, H. (2018b), "Free vibration analysis for composite laminated doubly-curved shells of revolution by a semi analytical Method", Compos. Struct., 201, 86-111. https://doi.org/10.1016/j.compstruct.2018.05.143. 
  46. Li, H., Pang, F., Gong, Q. and Teng, Y. (2019a), "Free vibration analysis of axisymmetric functionally graded doubly-curved shells with un-uniform thickness distribution based on Ritz method", Compos. Struct., 225, 111145. https://doi.org/10.1016/j.compstruct.2019.111145. 
  47. Li, H., Pang, F., Li, Y. and Gao, C. (2019b), "Application of first-order shear deformation theory for the vibration analysis of functionally graded doubly-curved shells of revolution", Compos. Struct., 212, 22-42. https://doi.org/10.1016/j.compstruct.2019.01.012. 
  48. Li, J., Chen, M. and Li, Z. (2022a), "Improved soil-structure interaction model considering time-lag effect", Comput. Geotech., 148, 104835. https://doi.org/10.1016/j.compgeo.2022.104835. 
  49. Li, M., Guo, Q., Chen, L., Li, L., Hou, H. and Zhao, Y. (2022b), "Microstructure and properties of graphene nanoplatelets reinforced AZ91D matrix composites prepared by electromagnetic stirring casting", J. Mater. Res. Tech., 21, 4138-4150. https://doi.org/10.1016/j.jmrt.2022.11.033. 
  50. Mingzheng, L.I.U., Changhe, L.I., Zhang, Y., Min, Y.A.N.G., Teng, G.A.O., Xin, C.U.I. and SHARMA, S. (2022), "Analysis of grinding mechanics and improved grinding force model based on randomized grain geometric characteristics", Chinese J. Aeronaut., https://doi.org/10.1016/j.cja.2022.11.005. 
  51. Liao, Q., Li, S., Xi, F., Tong, Z., Chen, X., Wan, X. and Deng, R. (2023), "High-performance silicon carbon anodes based on value-added recycling strategy of end-of-life photovoltaic modules", Energy. https://doi.org/10.1016/j.energy.2023.128345 
  52. Liu, H., Zhao, Y., Pishbin, M., Habibi, M., Bashir, M.O. and Issakhov, A. (2022), "A comprehensive mathematical simulation of the composite size-dependent rotary 3D microsystem via two-dimensional generalized differential quadrature method", Eng. Comput., 38(Suppl5), 4181-4196. https://doi.org/10.1007/s00366-021-01419-2. 
  53. Liu, Y., Wang, W., He, T., Moradi, Z. and Larco Benitez, M.A. (2022), "On the modelling of the vibration behaviors via discrete singular convolution method for a high-order sector annular system", Eng. Comput., 38(Suppl 4), 3631-3653. https://doi.org/10.1007/s00366-021-01454-z. 
  54. Lu, Z., Gu, D., Ding, H., Lacarbonara, W. and Chen, L. (2020), "Nonlinear vibration isolation via a circular ring", Mech. Syst. Signal. Proc., 136, 106490. https://doi.org/10.1016/j.ymssp.2019.106490. 
  55. Ma, L., Liu, X. and Moradi, Z. (2022), "On the chaotic behavior of graphene-reinforced annular systems under harmonic excitation", Eng. Comput., 38, 2583-2607. https://doi.org/10.1007/s00366-020-01210-9. 
  56. Mahapatra, T.R., Panda, S.K. and Kar, V.R. (2016), "Nonlinear hygro-thermo-elastic vibration analysis of doubly curved composite shell panel using finite element micromechanical model", Mech. Adv. Mater. Struct., 23, 1343-1359. https://doi.org/10.1080/15376494.2015.1085606. 
  57. Mirzaei, M. and Kiani, Y. (2015), "Thermal buckling of temperature dependent FG-CNT reinforced composite conical shells", Aero. Sci. Tech., 47, 42-53. https://doi.org/10.1016/j.ast.2015.09.011. 
  58. Mohammad-Rezaei Bidgoli, E., Arefi, M. and Mohammadimehr, M. (2022), "Free vibration analysis of honeycomb doubly curved shell integrated with CNT-reinforced piezoelectric layers", Mech. Based Des. Struct. Mach., 50(12), 4409-4440. https://doi.org/10.1080/15397734.2020.1836969. 
  59. Moradi, Z., Davoudi, M., Ebrahimi, F. and Ehyaei, A.F. (2021), "Intelligent wave dispersion control of an inhomogeneous micro-shell using a proportional-derivative smart controller", Waves Rand. Compl. Media, In Press. https://doi.org/10.1080/17455030.2021.1926572 . 
  60. Mozafari, H., Khatami, S., Molatefi, H., Crupi, V., Epasto, G. and Guglielmino, E. (2016), "Finite element analysis of foam-filled honeycomb structures under impact loading and crashworthiness design", Int. J. Crashworth., 21(2), 148-160. https://doi.org/10.1080/13588265.2016.1140710. 
  61. Manzoor, S., Chu, Y.M., Siddiqui, M.K. and Ahmad, S. (2020), "On topological aspects of degree based entropy for two carbon nanosheets", Main. Group. Metal. Chemistry., 43(1), 205-218. https://doi.org/10.1515/mgmc-2020-0025. 
  62. Madhukesh, J.K., Kumar, R.N., Gowda, R.P., Prasannakumara, B. C., Ramesh, G.K., Khan, M.I. and Chu, Y.M. (2021), "Numerical simulation of AA7072-AA7075/water-based hybrid nanofluid flow over a curved stretching sheet with Newtonian heating: A non-Fourier heat flux model approach", J. Molecul. Liq., 335, 116103. https://doi.org/10.1016/j.molliq.2021.116103. 
  63. Nasihatgozar, M. Khalili S.M.R. Malekzadeh Fard K. (2017), "General equations for free vibrations of thick doubly curved sandwich panels with compressible and incompressible core using higher order shear deformation theory", Steel. Compos. Struct. 24(2), 151-176. http://dx.doi.org/10.12989/scs.2017.24.2.151. 
  64. Nguyen, N.V., Nguyen, L.B., Nguyen-Xuan, H. and Lee, J. (2020),"Analysis and active control of geometrically nonlinear responses of smart FG porous plates with graphene nanoplatelets reinforcement based on Bezier extraction of NURBS", Int. J. Mech. Sci., 180, 105692. https://doi.org/10.1016/j.ijmecsci.2020.105692 
  65. Pang, F., Li, H., Wang, X., Miao, X. and Li, S. (2018), "A semi analytical method for the free vibration of doubly-curved shells of revolution", Comput. Math. Appl., 75(9), 3249-3268. https://doi.org/10.1016/j.camwa.2018.01.045. 
  66. Peng, D., Chen, S., Darabi, R., Ghabussi, A. and Habibi, M. (2021). Prediction of the bending and out-of-plane loading effects on formability response of the steel sheets", Archiv. Civil Mech. Eng., 21(2), 74. https://doi.org/10.1007/s43452-021-00227-1. 
  67. Pham, Q.H., Tran, T.T., Tran, V.K., Nguyen, P.C., Nguyen-Thoi, T. and Zenkour, A.M. (2022), "Bending and hygro-thermomechanical vibration analysis of a functionally graded porous sandwich nanoshell resting on elastic foundation", Mech. Adv. Mater. Struct., 29(27), 5885-5905. https://doi.org/10.1080/15376494.2021.1968549. 
  68. Qureshi, M.Z.A., Bilal, S., Chu, Y.M. and Farooq, A.B. (2021), "Physical impact of nano-layer on nano-fluid flow due to dispersion of magnetized carbon nano-materials through an absorbent channel with thermal analysis", J. Molec. Liq., 325, 115211. https://doi.org/10.1016/j.molliq.2020.115211. 
  69. Qiao, W., Fu, Z., Du, M., Wei, N. and Liu, E. (2023), "Seasonal peak load prediction of underground gas storage using a novel two-stage model combining improved complete ensemble empirical mode decomposition and long short-term memory with a sparrow search algorithm", Energy, 274, 127376. https://doi.org/10.1016/j.energy.2023.127376. 
  70. Rahman, H., Jamshed, R., Hameed, H. and Raza, S. (2011), "Finite Element Analysis (FEA) of honeycomb sandwich panel for continuum properties evaluation and core height influence on the dynamic behavior", Adv. Mater. Res., 326, 1-10. https://doi.org/10.4028/www.scientific.net/AMR.326.1. 
  71. Rezaiee-Pajand, M., Masoodi, A.R. and Arabi, E. (2018), "Geometrically nonlinear analysis of FG doubly-curved and hyperbolical shells via laminated by new element", Steel. Compos. Struct., 28(3), 389-401. http://dx.doi.org/10.12989/scs.2018.28.3.389. 
  72. Sadowski, T. and Bec, J. (2011), "Effective properties for sandwich plates with aluminium foil honeycomb coreand polymer foam filling - Static and dynamic response", Comput. Mater. Sci., 50, 1269-1275. https://doi.org/10.1016/j.commatsci.2010.04.014. 
  73. Saraswathy, B., Kumar, R.R. and Mangal, L. (2012), "Dynamic Analysis of Honeycomb Sandwich Beam withMultiple Debonds", Int. Schol. Res. Net. Mech. Eng., 826952. https://doi.org/10.5402/2012/826952. 
  74. Shao, Y., Zhao, Y., Gao, J. and Habibi, M., (2021), "Energy absorption of the strengthened viscoelastic multi-curved composite panel under friction force", Archiv. Civ. Mech. Eng, 21, 141. https://doi.org/10.1007/s43452-021-00279-3. 
  75. Sorokin, S.V., Grishina, S.V. and Ershova, O.A. (2001), "Analysis and control of vibrations of honeycomb plates by parametric stiffness modulations", Smart Mater. Struct., 10(5), 1031-1045. https://doi.org/10.1088/0964-1726/10/5/320. 
  76. Sobhy, M. and Zenkour, A.M. (2019), "Vibration analysis of functionally graded graphene platelet-reinforced composite doubly-curved shallow shells on elastic foundations", Steel. Compos. Struct., 33(2), 195-208. http://dx.doi.org/10.12989/scs.2019.33.2.195. 
  77. Song, S., Chong, D., Zhao, Q., Chen, W. and Yan, J. (2023), "Numerical investigation of the condensation oscillation mechanism of submerged steam jet with high mass flux", Chem. Eng. Sci., 270, 118516. https://doi.org/10.1016/j.ces.2023.118516. 
  78. Thai, C.H., Ferreira, A.J.M., Tran, T.D., Phung-Van, P. (2019), "Free vibration, buckling and bending analyses of multilayer functionally graded graphene nanoplatelets reinforced composite plates using the NURBS formulation", Compos. Struct., 220, 749-759. https://doi.org/10.1016/j.compstruct.2019.03.100. 
  79. Torabi, K., Afshari, H. and Aboutalebi, F.H. (2017), "Vibration and flutter analyses of cantilever trapezoidal honeycomb sandwich plates", J. Sand. Struct. Mater., 21(8), 2887-2920. https://doi.org/10.1177/1099636217728746. 
  80. Tran, T.T., Pham, Q.H., Nguyen-Thoi, T., Tran, T.V. (2020), "Dynamic analysis of sandwich auxetic honeycomb plates subjected to moving oscillator load on elastic foundation", Adv. Mater. Sci. Eng., 6309130. https://doi.org/10.1155/2020/6309130. 
  81. Tran, T.T., Tran, V.K., Le, P.B., Phung, V.M., Do, V.T. and Nguyen, H.N. (2020), "Forced vibration analysis of laminated composite shells reinforced with graphene nanoplatelets using finite element method", Adv. Civil. Eng., 1471037. https://doi.org/10.1155/2020/1471037. 
  82. Tran, T.T., Tran, V.K., Pham, Q.H. and Zenkour, A.M. (2021), "Extended four-unknown higher-order shear deformation nonlocal theory for bending, buckling and free vibration of functionally graded porous nanoshell resting on elastic foundation", Compos. Struct., 264, 113737. https://doi.org/10.1016/j.compstruct.2021.113737. 
  83. Upreti, S., Singh, V.K., Kamal, S.K., Jain, A., Dixit, A. (2020), "Modelling and analysis of honeycomb sandwich structure using finiteelement method", Mater. Today: Proceeding, 25(4), 620-625. https://doi.org/10.1016/j.matpr.2019.07.377. 
  84. Wu, J. and Habibi, M. (2022), "Dynamic simulation of the ultrafast-rotating sandwich cantilever disk via finite element and semi-numerical methods", Eng. Comput., 38, 4127-4143. https://doi.org/10.1007/s00366-021-01396-6. 
  85. Wang, M., Jiang, C., Zhang, S., Song, X., Tang, Y. and Cheng, H. (2018), "Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage", Nature. Chem., 10(6), 667-672. https://doi.org/10.1038/s41557-018-0045-4. 
  86. Wang, J., Liang, F., Zhou, H., Yang, M. and Wang, Q. (2022), "Analysis of position, pose and force decoupling characteristics of a 4-UPS/1-RPS parallel grinding robot", Symmetry. 14(4), 825. https://doi.org/10.3390/sym14040825. 
  87. Xiang, J., Liao, J., Zhu, Z., Li, P., Chen, Z., Huang, J. and Chen, X. (2023), "Directional fluid spreading on microfluidic chip structured with microwedge array", Phys. Fluids., 35(6), 62005. https://doi.org/10.1063/5.0151005. 
  88. Xu, W., Pan, G., Moradi, Z. and Shafiei, N. (2021), "Nonlinear forced vibration analysis of functionally graded non-uniform cylindrical microbeams applying the semi-analytical solution", Compos. Struct., 275, 114395. https://doi.org/10.1016/j.compstruct.2021.114395. 
  89. Yazdani, R. Mohammadimehr, M. and Zenkour, A.M. (2019), "Vibration analysis of double-bonded micro sandwich cylindrical shells under multi-physical loadings", Steel. Compos. Struct., 33(1), 93-109. https://doi.org/10.12989/scs.2019.33.1.093. 
  90. Yin, S., Xiao, Z., Deng, Y., Zhang, G., Liu, J. and Gu, S. (2021), "Isogeometric analysis of size-dependent Bernoulli-Euler beam based on a reformulated strain gradient elasticity theory", Comput. Struct., 253, 106577. https://doi.org/10.1016/j.compstruc.2021.106577. 
  91. Yu, X., Maalla, A. and Moradi, Z. (2022), "Electroelastic high-order computational continuum strategy for critical voltage and frequency of piezoelectric NEMS via modified multi-physical couple stress theory", Mech. Sys. Sig. Process., 165, 108373. https://doi.org/10.1016/j.ymssp.2021.108373. 
  92. Zhicheng, Y., Yonghui, H., Airong, L., Jiyang, F. and Di, W. (2019), "Nonlinear in-plane buckling of fixed shallow functionally graded graphene reinforced composite arches subjected to mechanical and thermal loading", Appl. Math. Model., 70, 315-327. https://doi.org/10.1016/j.apm.2019.01.024. 
  93. Zenkour, A.M. (2009), "The refined sinusoidal theory for FGM plates on elastic foundations", Int. J. Mech. Sci., 51(11-12), 869-880. https://doi.org/10.1016/j.ijmecsci.2009.09.026. 
  94. Zhang, X., Tang, Y., Zhang, F. and Lee, C. (2016), "A novel aluminum-graphite dual-ion battery", Adv. Energy. Mater., 6(11), 1502588. https://doi.org/10.1002/aenm.201502588. 
  95. Zhang, Z., Sui, M., Li, C., Zhou, Z., Liu, B., Chen, Y. and Sharma, S. (2021), "Residual stress of MoS2 nano-lubricant grinding cemented carbide", Int. J. Adv. Manuf. Technol., 1, 1-15. https://doi.org/10.1007/s00170-022-08660-z. 
  96. Zhang, Y., Liu, G., Ye, J. and Lin, Y. (2022b), "Crushing and parametric studies of polygonal substructures based hierarchical cellular honeycombs with non-uniform wall thickness", Compos. Struct., 299, 116087. https://doi.org/10.1016/j.compstruct.2022.116087. 
  97. Zhang, H., Xiao, Y., Xu, Z., Yang, M., Zhang, L., Yin, L. and Cai, X. (2022c), "Effects of Ni-decorated reduced graphene oxide nanosheets on the microstructural evolution and mechanical properties of Sn-3.0Ag-0.5Cu composite solders", Intermetallics, 150, 107683. https://doi.org/10.1016/j.intermet.2022.107683. 
  98. Zhang, L., Chen, Z., Habibi, M., Ghabussi, A. and Alyousef, R. (2021), "Low-velocity impact, resonance, and frequency responses of FG-GPLRC viscoelastic doubly curved panel", Compos. Struct., 269, 114000. https://doi.org/10.1016/j.compstruct.2021.114000. 
  99. Zhao, Y., Moradi, Z., Davoudi, M. and Zhuang, J. (2021), "Bending and stress responses of the hybrid axisymmetric system via state-space method and 3D-elasticity theory", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-020-01242-1. 
  100. Zhao, J., Choe, K., Xie, F., Wang, A., Shuai, C. and Wang, Q. (2018), "Three-dimensional exact solution for vibration analysis of thick functionally graded porous (FGP) rectangular plates with arbitrary boundary conditions", Compos. Part B: Engineering, 155, 369-381. https://doi.org/10.1016/j.compositesb.2018.09.001. 
  101. Zhao, T.Y., Ma, Y., Zhang, H.Y., Pan, H.G. and Cai, Y. (2021), "Free vibration analysis of a rotating graphene nanoplatelet reinforced pre-twist blade-disk assembly with a setting angle", Appl. Math. Model., 93, 578-596. https://doi.org/10.1016/j.apm.2020.12.025.