• 제목/요약/키워드: shell analysis

검색결과 2,027건 처리시간 0.027초

전달행렬법에 의한 반구 원통형 쉘구조의 해석 (An Analysis of Hemisphere-cylindrical Shell Structure by Transfer Matrix Method)

  • 김용희;이윤영
    • 한국농공학회지
    • /
    • 제45권4호
    • /
    • pp.115-125
    • /
    • 2003
  • Shell structures are widely used in a variety of engineering application, and mathematical solution of shell structures are available only for a few special cases. The solution of shell structure is more complicated when it has such condition as winkler foundation, other problems. In this study many simplified methods (analogy of beam on elastic foudation, finite element method and transfer matrix method) are applied to analyze a hemisphere-cylindrical shell structures on elastic foundation. And the transfer matrix method is extensively used for the structural analysis because of its merit in the theoretical backgroud and applicability. Therefore, this paper presents the analysis of hemisphere-cylindrical shell structure base on the transfer matrix method. The technique is attractive for implementation on a numerical solution by means of a computer program coded in FORTRAN language with a few elements. To demonstrate this fact, it gives good results which compare well with finite element method.

축대칭 쉘 구조의 단순 유한요소 해석 (A Simple Finite Element Analysis of Axisymmetrical Shell Structures)

  • 김용희;이윤성
    • 한국농공학회지
    • /
    • 제45권2호
    • /
    • pp.68-77
    • /
    • 2003
  • Shell structure are widely used in a variety of engineering application and mathematical solution of shell structures are available only for a few special cases. The solution of shell structure is more complicated when it has such condition as winker foundation, variable thickness and other problem. In this paper, a simple finite element method is presented for the analysis of axisymmetric several types of shell structure subjected to axisymmetric loads and having uniform and varying wall thickness on elastic foundation. The method is based on the analogy with a beam on elastic foundation (BEF), foundation stiffness matrix where the foundation modulus and beam flexural rigidity are replaced by appropriate parameters pertaining to the shell under considerations. The technique is attractive for implementation on a numerical solution by means of a computer program coded in FORTRAN language with a few elements. To demonstrate this fact, it gives good results which compare well with SAP2000.

박막/쉘 혼합요소의 판별조건과 강소성/탄소성 유한요소해석 적용에 관한 연구 (A Study on the Criterion for Membrane/Shell Mixed Element and Application to the Rigid-Plastic/Elastic-Plastic Finite Element Analysis)

  • 정동원;양경부
    • 한국해양공학회지
    • /
    • 제13권2호통권32호
    • /
    • pp.1-10
    • /
    • 1999
  • This study is concerned with the application of new criterion for membrane/shell mixed element in the rigid-plastic finite element analysis and elastic-plastic finite element analysis. The membrane/shell mixed element can be selctively adapted to the pure stretching condition by using membrane or a shell element in the bending effect areas. Thus, membrane/shell mixed element requires a efficient criterion for a distinction between membrane and shell element. In the present study introduce the criterion using the angle of between two element and confirm a generality of criterion from appling the theory to a rigid-plastic and elastic-plastic problems.

  • PDF

Bending analysis of composite skew cylindrical shell panel

  • Haldar, Salil;Majumder, Aditi;Kalita, Kanak
    • Structural Engineering and Mechanics
    • /
    • 제70권1호
    • /
    • pp.125-131
    • /
    • 2019
  • A nine node isoparametric plate bending element is used for bending analysis of laminated composite skew cylindrical shell panels. Both thick and thin shell panels are solved. Rotary inertia and shear deformation are incorporated by considering first order shear deformation theory. The analysis is performed considering shallow shell theory. Both shallow and moderately deep skew cylindrical shells are investigated. Skew cylindrical shell panels having different thickness ratios (h/a), radius to length ratios (R/a), ply angle orientations, number of layers, aspect ratio (b/a), boundary conditions and various loading (concentrated, uniformly distributed, linear varying and doubly sinusoidal varying) conditions are analysed. Various new results are presented.

구형 캡이 결합된 외팔 원통 쉘의 고유진동 해석 (Free Vibration Analysis of a Circular Cylindrical Shell with a Spherical Cap)

  • J.S. Yim;D.S. Sohn
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.355.2-355
    • /
    • 2002
  • The receptance method was applied for the analysis of a cylindrical shell with a spherical cap attached at an arbitrary axial position of the shell. The boundary condition of the shell considered here was clamped-free condition. Before the analysis of the shell/spherical cap combined structure, natural frequencies of the cap and the shell were calculated separately and then they were used in the calculation of the frequencies of the combined structure by the receptance method. (omitted)

  • PDF

Numerical Analysis of Light Extraction Efficiency of a Core-shell Nanorod Light-emitting Diode

  • Kangseok Kim;Gijun Ju;Younghyun Kim
    • Current Optics and Photonics
    • /
    • 제7권5호
    • /
    • pp.496-503
    • /
    • 2023
  • We present a detailed analysis of the light extraction efficiency (LEE) of a core-shell nanorod light emitting diode (LED) using finite-difference time-domain (FDTD) simulations. We found that the LEE has a deep dependence on source positions and polarization directions based on the calculated LEE results for every x and z position inside the core-shell nanorod structure. The LEEs are different for the upper part (pyramid) and the lower part (sidewall) of the core-shell nanorod owing to total internal reflection (TIR) and the generated optical modes in the structure. As a result, the LEE of sidewall is much larger than that of pyramid. The averaged LEE of the core-shell nanorod LED is also investigated with variable p-GaN thickness, n-GaN thickness, and height for the design guidelines for the optimized LEE of core-shell nanorod LEDs.

실베스터-전달강성계수법에 의한 축대칭 원통형 셸의 자유진동 해석 (Free Vibration Analysis of Axisymmetric Cylindrical Shell by Sylvester-Transfer Stiffness Coefficient Method)

  • 최명수;여동준
    • 동력기계공학회지
    • /
    • 제17권2호
    • /
    • pp.46-55
    • /
    • 2013
  • In this paper, the computational algorithm for free vibration analysis of an axisymmetric cylindrical shell is formulated by the Sylvester-transfer stiffness coefficient method (S-TSCM) which combines the Sylvester's inertia theorem and the transfer stiffness coefficient method. After the computational programs for obtaining the natural frequencies and natural modes of the axisymmetric cylindrical shell are made by the S-TSCM and the finite element method (FEM), the computational results which are natural frequencies, natural modes, and computational times by both methods are compared. From the computational results, we can confirm that S-TSCM has the reliability in the free vibration analysis of the axisymmetric cylindrical shell and is superior to FEM in the viewpoint of computational times.

The new flat shell element DKMGQ-CR in linear and geometric nonlinear analysis

  • Zuohua Li;Jiafei Ning;Qingfei Shan;Hui Pan;Qitao Yang;Jun Teng
    • Computers and Concrete
    • /
    • 제31권3호
    • /
    • pp.223-239
    • /
    • 2023
  • Geometric nonlinear performance simulation and analysis of complex modern buildings and industrial products require high-performance shell elements. Balancing multiple aspects of performance in the one geometric nonlinear analysis element remains challenging. We present a new shell element, flat shell DKMGQ-CR (Co-rotational Discrete Kirchhoff-Mindlin Generalized Conforming Quadrilateral), for linear and geometric nonlinear analysis of both thick and thin shells. The DKMGQ-CR shell element was developed by combining the advantages of high-performance membrane and plate elements in a unified coordinate system and introducing the co-rotational formulation to adapt to large deformation analysis. The effectiveness of linear and geometric nonlinear analysis by DKMGQ-CR is verified through the tests of several classical numerical benchmarks. The computational results show that the proposed new element adapts to mesh distortion and effectively alleviates shear and membrane locking problems in linear and geometric nonlinear analysis. Furthermore, the DKMGQ-CR demonstrates high performance in analyzing thick and thin shells. The proposed element DKMGQ-CR is expected to provide an accurate, efficient, and convenient tool for the geometric nonlinear analysis of shells.

곡률 원판이 결합된 외팔 원통 쉘의 고유진동 해석 (Free Vibration Analysis of a Curvatured Plate Welded to a Clamped-Free Circular Cylindrical Shell)

  • 임정식;손동성
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.529-534
    • /
    • 2002
  • The receptance method was applied for the analysis of a cylindrical shell with a curvaturated plate attached at the top of the shell. The boundary conditions of the shell considered here were clamped at the bottom and free at the top of the shell. Before the analysis of the shell/plate combined structure, the natural frequencies of the plate and the shell were calculated separately and then they were used in the calculation of the frequencies of the combined structure by the receptance method. The frequency equation of the combined structure was derived from the continuity condition at the junction of the shell and the plate. The frequencies for various curvature factors of the plate were presented and compared with those from ANSYS to show its validity of the present method.

  • PDF

가정변형도 쉘요소를 이용한 보강된 쉘구조의 기하학적 비선형해석 (Geometrically Nonlinear Analysis of Stiffened Shell Structures Using the Assumed Strain Shell Element)

  • 최명수;김문영;장승필
    • 한국전산구조공학회논문집
    • /
    • 제13권2호
    • /
    • pp.209-220
    • /
    • 2000
  • 보강된 판 및 쉘구조의 기하학적 비선형해석을 수행하기 위하여, total lagrangian formulation에 근거한 증분 평형방정식을 적용하고, 강도행렬 산정시 회전각의 2차항을 포함시켜 기하학적 비선형 해석시 해의 수렴성을 향상시켰으며, 보강된 쉘 구조의 해석시 보강재를 쉘 요소로 모델링하고 주부재와 보강재의 연결점에서 일반적인 변환관계를 이용하였다. 등매개 쉘 유한요소의 단점인 locking 현상을 극복하기 위하여 가정 변형률장을 적용하여 감차적분 또는 선택적분시 나타날 수 있는 제로 에너지 모드를 제거하였다. 수치해석 예제를 통하여 가정 변형률장에 근거한 쉘유한요소에 대한 효율성 및 적용성을 확인하였다.

  • PDF