• Title/Summary/Keyword: sheet conductance

Search Result 15, Processing Time 0.023 seconds

Electrical and Optical Property of Single-Wall Carbon Nanotubes Films (단일벽 탄소나노튜브 필름의 전기적 및 광학적 특성)

  • Oh, Dong-Hoon;Kang, Young-Jin;Jung, Hyuck;Song, Hye-Jin;Cho, You-Suk;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.19 no.9
    • /
    • pp.488-493
    • /
    • 2009
  • Thin films of single-wall carbon nanotubes (SWNT) with various thicknesses were fabricated, and their optical and electrical properties were investigated. The SWNTs of various thicknesses were directly coated in the arc-discharge chamber during the synthesis and then thermally and chemically purified. The crystalline quality of the SWNTs was improved by the purification processes as determined by Raman spectroscopy measurements. The resistance of the film is the lowest for the chemically purified SWNTs. The resistance vs. thickness measurements reveal the percolation thickness of the SWNT film to be $\sim$50 nm. Optical absorption coefficient due to Beer-Lambert is estimated to be $7.1{\times}10^{-2}nm^{-1}$. The film thickness for 80% transparency is about 32 nm, and the sheet resistance is 242$\Omega$/sq. The authors also confirmed the relation between electrical conductance and optical conductance with very good reliability by measuring the resistance and transparency measurements.

Enhancement of Electrical Conductivity in Silver Nanowire Network for Transparent Conducting Electrode using Copper Electrodeposition (구리 전기도금 방법을 이용한 은 나노와이어 투명전극의 전기전도도 향상)

  • Ji, Hanna;Jang, Jiseong;Lee, Sangyeob;Chung, Choong-Heui
    • Korean Journal of Materials Research
    • /
    • v.29 no.5
    • /
    • pp.311-316
    • /
    • 2019
  • Transparent conducting electrodes are essential components in various optoelectrical devices. Although indium tin oxide thin films have been widely used for transparent conducting electrodes, silver nanowire network is a promising alternative to indium tin oxide thin films owing to its lower processing cost and greater suitability for flexible device application. In order to widen the application of silver nanowire network, the electrical conductance has to be improved while maintaining high optical transparency. In this study, we report the enhancement of the electrical conductance of silver nanowire network transparent electrodes by copper electrodeposition on the silver nanowire networks. The electrodeposited copper lowered the sheet resistance of the silver nanowire networks from $21.9{\Omega}{\square}$ to $12.6{\Omega}{\square}$. We perform detailed X-ray diffraction analysis revealing the effect of the amount of electrodeposited copper-shell on the sheet resistance of the core-shell(silver/copper) nanowire network transparent electrodes. From the relationship between the cross-sectional area of the copper-shell and the sheet resistance of the transparent electrodes, we deduce the electrical resistivity of electrodeposited copper to be approximately 4.5 times that of copper bulk.

Characteristics of the Polar Ionosphere Based on the Chatanika and Sondrestrom Incoherent Scatter Radars

  • Kwak, Young-Sil;Ahn, Byung-Ho
    • Ocean and Polar Research
    • /
    • v.26 no.3
    • /
    • pp.489-499
    • /
    • 2004
  • The climatological characteristics of the polar ionospheric currents obtained from the simultaneous observations of the ionospheric electric field and conductivity are examined. For this purpose, 43 and 109 days of measurements from the Chatanika and Sondrestrom incoherent scatter radars are utilized respectively. The ionospheric current density is compared with the corresponding ground magnetic disturbance. Several interesting characteristics about the polar ionosphere are apparent from this study: (1) The sun determines largely the conductance over the Sondrestrom radar, while the nighttime conductance distribution over the Chatanika radar is significantly affected by auroral precipitation. (2) The regions of the maximum N-S electric field over the Chatanika radar are located approximately at the dawn and dusk sectors, while they tend to shift towards dayside over the Sondrestrom radar. The N-S component over Son-drestrom is slightly stronger than Chatanika. However, the E-W component over Chatanika is negligible compared to that of Sondrestrom. (3) The E-W ionospheric current flows dominantly in the night hemisphere over Chatanika, while it flows in the sunlit hemisphere over Sondrestrom. The N-S current over Chatanika flows prominently in the dawn and dusk sectors, while a strong southward current flows in the prenoon sector over Sondrestrom. (4) The assumption of infinite sheet current approximation is far from realistic, underestimating the current density by a factor of 2 or more. It is particularly serious for the higher latitude region. (5) The correlation between ${\Delta}H\;and\;J_E$ is higher than the one between ${\Delta}D\;and\;J_N$, indicating that field-aligned current affects ${\Delta}D$significantly.

CLIMATOLOGICAL CHARACTERISTICS OF THE POLAR IONOSPHERE BASED ON THE SONDRESTROM INCOHERENT SCATTER RADAR MEASUREMENTS (SONDRESTROM 비간섭 산란 레이더 자료를 이용한 극지방 전리층의 기후학적 특성 연구)

  • 곽영실;안병호
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.1
    • /
    • pp.75-88
    • /
    • 2002
  • The climatological characteristics of the polar ionosphere is examined in terms of the ionospheric conductance and electric field. For this purpose, 109 days of measurements from the Sondrestrom incoherent scatter radar are utilized. By combining these two quantities, it is possible to deduce the overhead ionospheric current distributions. The ionospheric current density thus obtained is compared with the corresponding ground magnetic disturbance. Also examined is the effect of the field-aligned current on the ground magnetic disturbance, particularly on the D component Several interesting climatological characteristics about the ionosphere over the Sonderstrom are apparent from this study. (1) The conductance distribution is mainly due to solar EUV radiation during day-time On the other hand, the conductance distribution during the night-time is very low. (2) The conductance distribution one. the polar cap region during the day-time is controlled mostly by the solar EUV radiation, while it is extremely low during night-time wish the Hall and Pedersen conductances being 1.6 and 1.2 siemen, respectively (3) The region of the maximum N-S electric field tend to locate in the dayside sector. The E-W component of the electric field is stronger than that over Chatanika (4) The E-W auroal inospheric current (J/sub E/) is more important in the sunlit hemisphere than the night hemisphere. And a strong southward current is noted in the prenoon sector (5) There is a significant correlation between the overhead ionospheric current and the simultaneously observed ground magnetic disturbance. However, the assumption for the infinite sheet current approximation is far from realistic, underestimating the current density. And the correlation between ${\Delta}H$ and J/sub E/ is higher than the one between ${\Delta}D$ and J/sub N/ , indicating that field-aligned current affects significantly ${\Delta}D$.

ESTIMATION OF IONOSPHERIC CONDUCTIVITY BASED ON THE MEASUREMENTS BY SUPERDARN HF RADARS AND GREENLAND MAGNETOMETERS (SUPERDARN과 GREENLAND 자력계를 이용한 전리층 전기전도도의 추정)

  • Lee, Eun-Ah;Ahn, Byung-Ho;Yi, Yu
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.2
    • /
    • pp.141-150
    • /
    • 2002
  • The ionosphere plays an important role in the electrodynamics of space environment. In particular, the information on the ionospheric conductivity distribution is indispensable in understanding the electrodynamics of the magnetosphere and ionosphere coupling study. To meet such a requirement, several attempts have been made to estimate the conductivity distribution over the polar ionosphere. As one of such attempts we compare the ionospheric plasma convection patterns obtained from the Super Dual Auroral Radar Network (SuperDARN), from which the electric field distribution is estimated, and the simultaneously measured ground magnetic disturbance. Specifically, the electric field measured from the Goose Bay and Stokkseyri radars and magnetic disturbance data obtained from the west coast chain of Greenland are compared. In order to estimate ionospheric conductivity distribution with these information, the overhead infinite sheet current approximation is employed. As expected, the Hall conductance, height-integrated conductivity, shows a wide enhancement along the center of the auroral electrojet. However, Pedersen conductance shows negative values over a wide portion of the auroral oval region, a physically unacceptable situation. To alleviate this problem, the effect of the field-aligned current is taken into account. As a result, the region with negative Pedersen conductance disappears significantly, suggesting that the effect of the field-aligned current should be taken into account, when one wants to estimate ionospheric conductance based on ground magnetic disturbance and electric field measurements by radars.

Analytical Model for Metal Insulator Semiconductor High Electron Mobility Transistor (MISHEMT) for its High Frequency and High Power Applications

  • Gupta, Ritesh;Aggarwal, Sandeep Kr;Gupta, Mridula;Gupta, R.S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.3
    • /
    • pp.189-198
    • /
    • 2006
  • A new analytical model has been proposed for predicting the sheet carrier density of Metal insulator Semiconductor High Electron Mobility Transistor (MISHEMT). The model takes into account the non-linear relationship between sheet carrier density and quasi Fermi energy level to consider the quantum effects and to validate it from subthreshold region to high conduction region. Then model has been formulated in such a way that it is applicable to MESFET/HEMT/MISFET with few adjustable parameters. The model can also be used to evaluate the characteristics for different gate insulator geometries like T-gate etc. The model has been extended to forecast the drain current, conductance and high frequency performance. The results so obtained from the analysis show excellent agreement with previous models and simulated results that proves the validity of our model.

Development of Vacuum System for Improving Productivity of Fine Multi-hole Sheet Metal Product (미세 다공 박판제품 생산성 향상을 위한 진공 시스템의 개선)

  • Park, Joon-Hong;Kwon, Taek-Hwan;Choi, Young;Kim, Chul;Choi, Jae-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.8
    • /
    • pp.180-188
    • /
    • 2000
  • Fine multi-hole sheet metal product(FMSMP) is a specific metal plate which is used in color TV and computer monitor. Processes of manufacturing FMSMP are generally composed of coating cleaning exposure and etching processes. After a thin metal plate is made by rolling photosensitive liquid is coated on the metal plate in coating process. Then the coated thin metal plate consecutively passes through exposure process in which upper and lower glasses are compressed by vacuuming the space between glasses and metal plate. In this lowered glasses are compressed by vacuuming the space between glasses and metal plate. In this lowered vacuum state certain part of metal plate is desirably exposed to light and will be etched into forming lots of well-arranged holes with a specific diameter, nowadays to manufacture FMSMP of 17 inch braun tube 80 second is required for complete vacuum but 35 second is applied to manufacture FMSMP in reality. In the present study vacuuming time is tried to reduce for improvement of productivity by analyzing vacuum system and proposing several solutions, for faster vacuuming speed degree of vacuum state between glasses and metal plate is improved by the proposed method and experiments using the proposed method are performed for verification. In addition microstructure of FMSMP is investigated to prevent stain phenomena and to improve quality of the product.

  • PDF

Gate-tunable Supercurrent in Graphene-based Josephson Junction (그래핀 조셉슨 접합에서 초전류의 게이트 전압 의존성)

  • Jeong, D.;Lee, G.H.;Doh, Y.J.;Lee, H.J.
    • Progress in Superconductivity
    • /
    • v.13 no.1
    • /
    • pp.47-51
    • /
    • 2011
  • Mono-atomic-layer graphene is an interesting system for studying the relativistic carrier transport arising from a linear energy-momentum dispersion relation. An easy control of the carrier density in graphene by applying an external gate field makes the system even more useful. In this study, we measured the Josephson current in a device consisting of mono-layer graphene sheet sandwiched between two closely spaced (~300 nm) aluminum superconducting electrodes. Gate dependence of the supercurrent in graphene Josephson junction follows the gate dependence of the normal-state conductance. The gate-tunable and relatively large supercurrent in a graphene Josephson junction would facilitate our understanding on the weak-link behavior in a superconducting-normal metal-superconducting (SNS) type Josephson junction.

High-efficiency Organic Light-emitting Diodes(OLEDs) with optimized multilayer transparent electrodes

  • Yun, Chang-Hun;Cho, Hyun-Su;Yoo, Seung-Hyup
    • Journal of Information Display
    • /
    • v.11 no.2
    • /
    • pp.52-56
    • /
    • 2010
  • High-efficiency organic light-emitting diodes (OLEDs) based on multilayer transparent electrodes (MTEs) are reported. The dielectric/metal/dielectric (DMD) multilayer electrode based on a thin silver layer achieved high sheet conductance as small as $6{\Omega}/sp$ and a tuning capability in the optical and electrical properties by engineering the inner and outer dielectric layers. In the conventional normal bottom-emitting structure, a DMD-based OLED can be fabricated with 90% higher forward luminous efficiency and 30% higher external quantum efficiency (EQE) compared to ITO-based devices. Special attention was paid to the optimization method of such MTE structure considering both the injection and optical structures.

Optical Analysis of the ITO/Ag/ITO Multiple Layers as a Highly Conductive Transparent Electrode (고전도성 투명전극인 ITO/Ag/ITO 다층박막에 관한 광학적 분석)

  • Yoon, Yeo Tak;Cho, Eou Sik;Kwon, Sang Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.87-91
    • /
    • 2019
  • As a highly conductive and transparent electrode, ITO/Ag/ITO multilayers are fabricated using an in-line sputtering method. Optimal thickness conditions have been investigated in terms of the optical transmittance and the electrical conductance. Considering the optical properties, in this study, the experimental characteristics are analyzed based on theoretical phenomena, and they are compared with the simulated results. The simulations are based on the finite-difference-time-domain (FDTD) method in solving linear Maxwell equations. Consequently, the results showed that ITO/Ag/ITO multilayer structures with respective thicknesses of 39.2 nm/10.7 nm/39.2 nm are most suitable with an average transmittance of about 87% calculated for wavelengths ranging from 400-800 nm and a sheet resistance of about $7.1{\Omega}/{\square}$.