Analytical Model for Metal Insulator Semiconductor High Electron Mobility Transistor (MISHEMT) for its High Frequency and High Power Applications

  • Gupta, Ritesh (Semiconductor Device Research Laboratory Department of Electronic Science, University of Delhi South Campus) ;
  • Aggarwal, Sandeep Kr (Semiconductor Device Research Laboratory Department of Electronic Science, University of Delhi South Campus) ;
  • Gupta, Mridula (Semiconductor Device Research Laboratory Department of Electronic Science, University of Delhi South Campus) ;
  • Gupta, R.S. (Semiconductor Device Research Laboratory Department of Electronic Science, University of Delhi South Campus)
  • Published : 2006.09.30

Abstract

A new analytical model has been proposed for predicting the sheet carrier density of Metal insulator Semiconductor High Electron Mobility Transistor (MISHEMT). The model takes into account the non-linear relationship between sheet carrier density and quasi Fermi energy level to consider the quantum effects and to validate it from subthreshold region to high conduction region. Then model has been formulated in such a way that it is applicable to MESFET/HEMT/MISFET with few adjustable parameters. The model can also be used to evaluate the characteristics for different gate insulator geometries like T-gate etc. The model has been extended to forecast the drain current, conductance and high frequency performance. The results so obtained from the analysis show excellent agreement with previous models and simulated results that proves the validity of our model.

Keywords

References

  1. Sandeep R. Bahl and Jesus A. del Alamo, Physics of Breakdown in $InAlAs/n^+-InGaAs$ Heteros tructure Field ?Effect Transistors, IEEE Trans. Electron Devices, 1994; (41): p. 2268 https://doi.org/10.1109/16.337438
  2. Sandeep R. Bahl, Jesus A. del Alamo, Jurgen Dickmann and Steffen Schildberg, Off State Breakdown in InAlAs/InGaAs MODFET's, IEEE Trans. Electron Device, 1995; (42): p. 15 https://doi.org/10.1109/16.370041
  3. Aldo Di Carlo, Lorenzo Rossi, Paolo Lugli, Gunther Zandler, Gaudenzio Meneghesso, Mike Jackson and Enrico Zanoni, Monte Carlo Study of the Dynamic Breakdown Effects in HEMT's, IEEE Electron Device Letters, 2000 (21): p. 149 https://doi.org/10.1109/55.830964
  4. Mark H. Somerville, Chris S. Putnam and Jesus A. del Alamo, Determining dominant breakdown mechanisms in InP HEMTs, IEEE Electron Device letters, 2001; (22): p. 565 https://doi.org/10.1109/55.974578
  5. M. Borgarino, R. Menozzi, D. Dieci, L. Cattani and F. Fantini, Reliability physics of compound semiconductor transistors for microwave applications, Microelectronics Reliability 2001; (41): p. 21 https://doi.org/10.1016/S0026-2714(00)00206-7
  6. Gaudenzio Meneghesso and Enrico Zanoni, 'Failure modes and mechanisms of InP-based and metamorphic high electron mobility transistors', Microelectronic reliability 2002; (42): p. 685 https://doi.org/10.1016/S0026-2714(02)00045-8
  7. Ammar Sleiman, Aldo Di Carlo, Paolo Lugli, G. Meneghesso, E. Zanoni and J. L. Thobel, Channel Thickness dependence of Breakdown Dynamic in InP-based lattice-Matched HEMTs, IEEE Trans. Electron Device 2003; (50): p. 2009 https://doi.org/10.1109/TED.2003.816105
  8. K. Higuchi, H. Matsumoto, T. Mishima and T. Nakamura, High Breakdown voltage InAlAs/InGaAs High Electron Mobility Transistors on GaAs with Wide Recess Structure, Jpn. J. Appl. Phys. 1999: (38): p. 1178 https://doi.org/10.1143/JJAP.38.1178
  9. S. H. Wemple, W. C. Niehaus, H. M. Cox, J. V. Dilorenzo, and W. O. Schlosser, Control of gate?drain avalanche in GaAs MESFET's, IEEE Trans Electron Devices, 1980; (27): p. 1013 https://doi.org/10.1109/T-ED.1980.19979
  10. B. Kim, H. Q. Tserng, and H.D. Shih, Microwave power GaAs MISFET's with undoped AlGaAs as an insulator, IEEE Electron Device Lett., 1984; (5): p. 494 https://doi.org/10.1109/EDL.1984.26000
  11. B. Kim, H. Q. Tserng, and J. W. Lee, GaAs/AlGaAs heterojunction MISFET's having 1-W/mm power density at 18.5GHz, IEEE Electron Device Lett., 1986; (7): p. 638 https://doi.org/10.1109/EDL.1986.26502
  12. T. Mimura and M. Fukutta, Status of the GaAs metal-oxide-semiconductor technology, IEEE Trans Electron Devices, 1980; (27): p. 1147 https://doi.org/10.1109/T-ED.1980.19998
  13. Richard A. Kiehl, Sandip Twari, Steven L. Wright, and M. A. Olson, p-Channel Quantum- Well Heterostructure $MI^3SFET$, IEEE Electron Device Letters, 1988; (9): p. 309 https://doi.org/10.1109/55.726
  14. Bumman Kim, R.J. Matyi, Marianne Wurtele, and Hua Quen Tserng, AlGaAs/InGaAs/GaAs Quan tum-Well Power MISFET at Millimeter-Wave Frequencies, IEEE Electron Device Letters, 1988; (9): p. 610 https://doi.org/10.1109/55.9292
  15. Shuichi Fujita, Makoto Hirano and Takashi Mizutani, Small-Signal Characteristics of n+ -Ge Gate AlGaAs/GaAs MISFET's, IEEE Electron Device Letters, 1988; (9)
  16. Takao Waho and Fumihiko Yanagawa, A GaAs MISFET Using an MBE-Grown $CaF_2$ Gate Insulator Layer, IEEE Electron Device Letters, 1988; (9): p. 548 https://doi.org/10.1109/55.17840
  17. Arsam Antreasyan, P. A. Garbinski, Vincent. D. Mattera, M. D. Feuer, H. Temkin, and J. Filipe, High-speed Enhancement-Mode InP MISFET's Grown by Chloride Vapor-Phase Epitaxy', IEEE Transactions on Electron Devices. 1989; (36): p. 256 https://doi.org/10.1109/16.19924
  18. Jesus A. Del Alamo, and Takashi Mizutani, Bias Dependence of $f_T$ and $f_{max}$ in an $In_{0.52}Al_{0.48}As/n+\;-\;In_{0.53}\;Ga_{0.47}As$ MISFET, IEEE Electron Device Letters 1988; (9): p. 654 https://doi.org/10.1109/55.20426
  19. Jesus A. Del Alamo and Takashi Mizutani, A Recessed-Gate $In_{0.52}Al_{0.48}As/n+-In_{0.53}Ga_{0.47}As$ MIS-type FET, IEEE Trans. On Electron Devices, 1989; (36): p. 646 https://doi.org/10.1109/16.22469
  20. Jesus A. Del Alamo and Takashi Mizutani, An $In_{0.52}Al_{0.48}As/n+-In_{0.53}Ga_{0.47}As$ MISFET with Modulation-Doped Channel, IEEE Electron Device Letters, 1989; (10): p. 394 https://doi.org/10.1109/55.31768
  21. Paul Saunier, Richard Nguyen, L.J. Messick and M.A. Khatibzadeh, An InP MISFET with a 1.8 W/mm at Power Density of 30 GHz, IEEE Electron Device Letters, 1990; (11): p. 48 https://doi.org/10.1109/55.46927
  22. Chang-Lee Chen, ZEEE, Frank W. Smith, Brian J. Clifton, Leonard J. Mahoney, Michael J. Manfra, and Arthur R. Calawa, High-Power-Density GaAs MISFET's with a Low-Temperature-Grown Epitaxial Layer as the Insulator, IEEE Electron Device Letters, 1991; (12): p. 306 https://doi.org/10.1109/55.82069
  23. Chang-Lee Chen, Arthur R. Calawa, William E. Courtney, Leonard J. Mahoney, Susan C. Palmateer, Michael J. Manfra and Mark A. Hollis, Effects of Interface Traps on the Transcon ductance and Drain Current of InP MISFET's, IEEE Trans. on Electron Devices, 1992; (39): p. 1797 https://doi.org/10.1109/16.144667
  24. Hiroshi Iwai, Hisayo Sasaki Momose, Toyota Morimoto, Yoshio Ozawa, and Kikuo Yamabe, Stacked-Nitride Oxide Gate MISFET With High Hot-Carrier-Immunity, IEDM-90, 1990; p. 235 https://doi.org/10.1109/IEDM.1990.237185
  25. Yoon-Ha Jeong, Ki-Hawn Choi, and Seong-Kue Jo, Sulfide Treated GaAs MISFET's with Gate Insulator of Photo-CVD Grown $P_3N_5$ Film, IEEE Electron Device Letters, 1994; (15): p. 251 https://doi.org/10.1109/55.294086
  26. Hisayo Sasaki Momose, Toyota Morimoto, Yoshio Ozawa, Kikuo Yamabe, and Hiroshi Iwai, An Improvement of Hot-Carrier Reliability in the Stacked Nitride-Oxide Gate n- and p-MISFET's, IEEE Trans. on Electron Devices, 1995; (42): p. 704 https://doi.org/10.1109/16.372075
  27. C. L. Chen, L. J. Mahoney, K. B. Nichols, M. J. Manfra, B. F. Gramstorff, K. M. Molvar, R. A. Murphy, and E. R. Brown, Self-Aligned GaAs MISFET's with a Low-Temperature-Grown GaAs Gate Insulator, IEEE Electron Device Letters, 1995; (16): p. 109 https://doi.org/10.1109/55.382239
  28. C. L. Chen, L. J. Mahoney, K. B. Nichols, E. R. Brown, and B. F. Gramstorff, Self-Aligned p-Channel MISFET with a Low-Temperature-Grown GaAs Gate Insulator, IEEE Electron Device Letters, 1996; (17): p. 413 https://doi.org/10.1109/55.511592
  29. R.V.V.V.J. Rao, T.C. Chong, L.S. Tan, W.S.Lau and J.J. Liou, A Physical Analytical Model for LT-GaAs and $LT-Al_{0.3}Ga_{0.7}As$ MISFET Devices, IEDM-99 1999; p. 134 https://doi.org/10.1109/HKEDM.1999.836425
  30. Ritesh Gupta, Mridula Gupta and R. S. Gupta, A New Depletion dependent Analytical Model for Sheet Carrier density of InAlAs/InGaAs heteros tructure, InP based HEMT, Solid State Electronics 2003; (47): p. 33 https://doi.org/10.1016/S0038-1101(02)00307-6
  31. Ritesh Gupta, Mridula Gupta and R. S Gupta, A New simplified Analytical Short-channel Thres hold Voltage Model for InAlAs/InGaAs Hetero structure InP based Pulsed Doped HEMT, Solid State Electronics 2004; (48), p. 437 https://doi.org/10.1016/j.sse.2003.09.006
  32. N. DasGupta and A. DasGupta, An analytical expression for sheet carrier concentration versus gate voltage for HEMT modeling, Solid State Electron., 1993; (36): p. 201 https://doi.org/10.1016/0038-1101(93)90140-L
  33. 'An Analytical Non-Linear Charge Control Parasitic Resistance Depending Model for InAlAs/InGaAs/InP HEMT Characteristics', Ritesh Gupta, Abhinav Kranti, S Haldar, Mridula Gupta and R S Gupta, Microelectronics Engineering, Vol. 60, no. 3 ? 4, pp. 323-337, 2002 https://doi.org/10.1016/S0167-9317(01)00689-X