• Title/Summary/Keyword: shearing process

Search Result 199, Processing Time 0.027 seconds

High-order Reduced Radial Zernike Polynomials for Modal Reconstruction of Wavefront Aberrations in Radial Shearing Interferometers

  • Tien Dung Vu;Quang Huy Vu;Joohyung Lee
    • Current Optics and Photonics
    • /
    • v.7 no.6
    • /
    • pp.692-700
    • /
    • 2023
  • We present a method for improving the accuracy of the modal wavefront reconstruction in the radial shearing interferometers (RSIs). Our approach involves expanding the reduced radial terms of Zernike polynomials to high-order, which enables more precise reconstruction of the wavefront aberrations with high-spatial frequency. We expanded the reduced polynomials up to infinite order with symbolic variables of the radius, shearing amount, and transformation matrix elements. For the simulation of the modal wavefront reconstruction, we generated a target wavefront subsequently, magnified and measured wavefronts were generated. To validate the effectiveness of the high-order Zernike polynomials, we applied both low- and high-order polynomials to the wavefront reconstruction process. Consequently, the peak-to-valley (PV) and RMS errors notably decreased with values of 0.011λ and 0.001λ, respectively, as the order of the radial Zernike polynomial increased.

A study on minimization of fracture surface in fine blanking process using factorial analysis (요인분석법을 이용한 파인 블랭킹 공정의 파단면 최소화에 관한 연구)

  • Lee, Beom-Soon;Kim, Ok-Hwan
    • Design & Manufacturing
    • /
    • v.15 no.1
    • /
    • pp.41-47
    • /
    • 2021
  • The Fine Blanking process is an effective precision shearing process that can obtain a smooth cutting surface and high product precision through a single blanking process. It is widely used in various manufacturing fields. However, shearing through this fine blanking process is only intended to minimize burrs, die rolls and fracture surfaces and does not completely remove them. Therefore, it is necessary to study the minimization of burrs, die rolls and fracture surfaces in the fine blanking process. In this study, a study was conducted on the relationship between the fracture surface and process conditions that occurred during product production using the fine blanking process. For this purpose, the shape of the V-ring indenter, the distance to the punch, and the pressure force, clearance, shear rate, and physical properties of the material were selected as process and design variables, and the relationship with the fracture surface according to each process and design condition was tested. It was analyzed through the Experimental Design Method.

A study on the shearing of the straightened micro-wire (미세 와이어의 전단에 관한 연구)

  • Shin Y. S.;Hong N. P.;Kim B. H.;Kim H. Y.;Kim W. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.09a
    • /
    • pp.175-180
    • /
    • 2005
  • In this study, we have developed a novel wire straightener which uses the direct heating method (DHM) fer straightening the micro wire. Also, we have developed a shearing device for cutting the micro wire. In order to avoid the surface oxidization, we supplied the inert gas(Ar) during the heating process and examined the effect of gas flow rate. The effects of the tension and the current applied to the tungsten micro wires were also thoroughly studied. From various experiments and analyses, we could obtain fine straightness $(\approx1\;{\mu}m/1000\;{\mu}m)$ and roundness $(<{\pm}2{\mu}m\;/100{\mu}m)$ when the tension is $500\~~600gf$ and the current is about 1.5A. for burrfree cutting, counter-punch method which two cutters moving contrary was used. The cutting blade has various U-groove angle where upper $10^{\circ}$, $mid:25^{\circ}$, lower $0^{\circ}$. After the shearing process, we confirmed the shearing section.

  • PDF

A Study on Urethane Pad Blanking Process of Bellows Diaphragm for Hydrogen Compressor (수소압축기용 벨로우즈 다이아프램의 우레탄 금형 전단공정 연구)

  • Y. G. Kim;H. J. Park;K. E. Kim;M. P. Hong;G. P. Kang;K. Lee
    • Transactions of Materials Processing
    • /
    • v.33 no.1
    • /
    • pp.5-11
    • /
    • 2024
  • The development of a next-generation hydrogen compressor, a key component in the expansion of hydrogen charging infrastructure, is in progress. In order to improve compression efficiency and durability, it is important to optimize the precision forming and shearing processes of the diaphragm, which is the bellows unit cell, as well as the optimization of diaphragm shape itself. In this study, we aim to show that die and process design technology that can synchronize the inner and outer shearing points of the diaphragm for the precision forming of product can be constructed based on a numerical simulation. First, the damage model that can predict the fracture points will be determined using the shear load and shear zone measurements obtained by performing a blanking test of AISI-633 stainless steel. Next, we will explain the overall procedure based on numerical analysis model how to determine the shearing points according to the deformation pattern of urethane die for various shearing die design.

Texture and Microstructure in AA 3103 Sheets Deformed by Continuous Confined Strip Shearing Process (CCSS 가공에 의한 AA3103 판재의 집합조직 변화와 결정립 미세화에 관한 연구)

  • 이재필;이재철;허무영
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.176-178
    • /
    • 2003
  • Strip samples of AA 3103 were deformed by Continuous confined strip shearing (CCSS). The CCSS process was designed to provide a repeated shear deformation in metallic sheet materials. CCSS led to the formation of characteristic shear textures comprising a pronounced{111}<uvw> orientations. The intensity of the deformation texture hardly increased with increasing number of CCSS passes. EBSD equipped in a FESEM with a high beam current revealed the formation of fine grains even after annealing for the recrystallization.

  • PDF

Study on the Failure Criterion for Finite Element Analysis of Precise Shearing (정밀전단시의 유한요소 해석을 위한 파단기준 연구)

  • 강대철
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.5
    • /
    • pp.80-86
    • /
    • 2000
  • The Tailor Welded Blanks(TWB) are using various materials (different thickness, strength and different materials) can be welded together prior to the forming process. Therefore, TWB applications have become little by little important in automobile industries, because it has more light weight and process reduction. A burnish area is very important for TWB using laser welding. In this paper, evaluated failure criterion, effect of clearance and distance of between pad and punch by computer simulation. We used element separation method for fracture. And applied a plastic strain to failure criterion. According to the analysis results, we obtain failure criterion, when plastic strain is 2.0. The burnish area and clearance were inverse proportional.

  • PDF

FEM Analysis on Deformation Inhomogeneities Developed in Aluminum Sheets During Continuous Confined Strip Shearing (알루미늄 판재구속전단가공에서 형성되는 불균일 변형의 유한요소해석)

  • 최호준;이강노;황병복;허무영
    • Transactions of Materials Processing
    • /
    • v.12 no.1
    • /
    • pp.43-48
    • /
    • 2003
  • The strain state during the continuous confined strip shearing (CCSS) based on ECAP was tackled by means of a two-dimensional FEM analysis. The deformation of AA 1100 sheet in the CCSS apparatus was composed of three distinct processes of rolling, bending and shearing. The pronounced difference in the friction conditions on the upper and lower roll surfaces led to the different variation of the strain component ${epsilon}_13$ throughout the thickness of the aluminum sheet. Strain accompanying bending was negligible because of a large radius of curvature. The shear deformation was concentrated at the corner of the CCSSchannel where the abrupt change in the direction of material flow occurred. The process variables involving the CCSS-die design and frictions between tools and strip influenced the evolution of shear strains during CCSS.

Burrless shearing of the micro wire (미세 와이어의 버 없는 전단에 관한 연구)

  • Kim Woong-Kyum;Hong Nam-Pyo;Kim Heon-Young;Kim Byeong-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.52-56
    • /
    • 2006
  • Punching tools like an electrodes are made by milling or etching or EDM. These methods had time consuming, low efficiency and air pollution. So, we have developed a shearing device which counter punching method for burrless cutting of micro wire. Using the straightened SUS304 wire with $200{\mu}m$ diameter, we confirmed the tendency of the shear plane for punch tools. It was impossible to completely remove the bun in the shearing process. In order to minimize the burr size and fine shear plane, we have accomplished the various experiment conditions such as the U-groove, the effect of the counter punch, shear angle and clearance. The results of the experiments show that indentation, slip plane and bent shape were related to the shear angle and clearance.

Forging of Valve Fitting Products for Semi-Conductor Industry Using a Super-High Speed Shearing Process (초고속 전단공정을 이용한 반도체용 밸브 피팅 단조)

  • Park, Joon-Hong;Jeon, Eon-Chan;Kim, Tae-Ho;Kim, Hyung-Baek
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.56-61
    • /
    • 2008
  • Cropping metal materials is widely used for feeding processes of various forming method, such as forging, extrusion, drawing, and upsetting. However, cropping has many weak points, which are material loss in part of cutting, chip creation, and much use of lubrication oil, etc. In this study, instead of cropping, a novel process is proposed to cut metal materials, especially stainless steel bar which is known very difficult to crop. Results of FE-analysis will be shown to verify the proposed method comparing with those of the conventional cropping process. Also, fitting products were successfully forged using the fabricated billet by the proposed process.

  • PDF