• 제목/요약/키워드: shear-span depth ratio

검색결과 228건 처리시간 0.026초

샌드위치식 복합구조체의 셀(Cell)형상비가 거동과 성능에 미치는 영향 (Effect of Span-to-Depth Ratio on Behavior and Capacity in Composite Structure of Sandwich System)

  • 정연주;정광회;김병석;박성수;황일선
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2000년도 추계학술대회 논문집
    • /
    • pp.73-78
    • /
    • 2000
  • This paper describes the effect of span-to-depth ratio, which describes aspect of cell formed with top diaphragm steel plate, on capacity in composite steel-concrete structure of sandwich system. The span-to-depth ratio \ulcorner load-carrying mechanism and load-distribution capacity of structure. Therefore, stress levels of members and load-resis\ulcorner of system vary according to span-depth ratio. In this study, numerical nonlinear analysis was performed to various ratio for two types(MA, MB) composite structure of sandwich system to analyze the influence of span-to-depth ratio or, behavior. The difference of load-carrying mechanism and stress of members results from analysis results, then bas\ulcorner differences, the effects of span-to-depth ratio on shear capacity, flexural capacity and load-resistance capacity were analyze effects on failure mode and ductility were briefly. As a results of this study, as span-to-depth ratio increases, \ulcorner bottom steel plate and concrete lower. This implies an increase in effective flexural and shear capacity. Therefore lo\ulcorner capacity of structure improves as span-to-depth ratio increases, Especially, the effect is greate in shear than flexural span-to-depth ratio increases, this difference between flexural and shear capacity may change failure mode and ductility. span-to-depth ratio increases capacity increases more than flexural capacity, we should expect that structural behavior mode gradually change from shear to flexural and ductility of structure gradually improves.

  • PDF

Effect of shear-span/depth ratio on cohesive crack and double-K fracture parameters of concrete

  • Choubey, Rajendra Kumar;Kumar, Shailendra;Rao, M.C.
    • Advances in concrete construction
    • /
    • 제2권3호
    • /
    • pp.229-247
    • /
    • 2014
  • A numerical study of the influence of shear-span/depth ratio on the cohesive crack fracture parameters and double - K fracture parameters of concrete is carried out in this paper. For the study the standard bending specimen geometry loaded with four point bending test is used. For four point loading, the shear - span/depth ratio is varied as 0.4, 1 and 1.75 and the ao/D ratio is varied from 0.2, 0.3 and 0.4 for laboratory specimens having size range from 100 - 500 mm. The input parameters for determining the double - K fracture parameters are taken from the developed fictitious crack model. It is found that the cohesive crack fracture parameters are independent of shear-span/depth ratio. Further, the unstable fracture toughness of double-K fracture model is independent of shear-span/depth ratio whereas, the initial cracking toughness of the material is dependent on the shear-span/depth ratio.

전단경간비가 다른 철근콘크리트 보의 최소전단철근비 예측에 관한 실험적 연구 (An Experimental Study to Predict Minimum Shear Reinforcement Ratio of RC Beams with Various Shear Span-to-Depth Ratios)

  • 김욱연;김상우;이정윤
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.890-895
    • /
    • 2003
  • The purpose of this experimental study is to investigate the influence of shear span-to-depth ratio on the minimum shear reinforcement ratio of reinforced concrete beams. In this study, 7 reinforced concrete beam specimens were tested. The parameters of experiment are shear span-to-depth ratio(a/d=2.0, 3.0, 4.0) and shear reinforcement ratio($p_v$=0%, 0.183%, and 0.233%). The section of all secimens was 350mm width and 450mm depth. The observed results were compared with the calculated results by the current ACI 318-02 Building Code and the proposed equation. The safety rate of the specimens, L5S2A, L5S3A, L5S4A, and L5S4P specimens were 1.80, 1.25, 1.38, and 1.56 respectively. The test results indicated that the shear behavior of reinforced concrete beams with the minimum shear reinforcement was influenced by the shear span-to-depth ratio.

  • PDF

전단지간비에 따른 철근콘크리트 보의 전단강도특성에 관한 연구 (A Study on the Shear Strength Properties of Reinforced Concrete Beams according to Shear Span-Depth Ratio)

  • 박종건
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제4권1호
    • /
    • pp.93-100
    • /
    • 2000
  • The purpose of this study is to investigate the shear behavior of reinforced concrete beams according to small shear span-depth ratio between a/d=1.5, 2.8, 3.6. In general, shear strength of reinforced concrete beams is dependent on the compressive strength of concrete the longitudinal steel ratio, the shear span-depth ratio and shear reinforcement. The static test was carried out to measure the ultimate load, the initial load of flexural and diagonal cracking, crack patterns, fracture modes. The load versus strain and load versus deflection relations were obtained from the static test. The test results on shear strength were compared with results obtained by the formulas of ACI code 318-95. The shear strength of reinforced concrete beams exceeded those predicted following present ACI code 318-95(11-6).

  • PDF

고강도 철근 콘크리트 깊은 보의 전단거동에 관한 실험적 연구 (An Experimental Study on the Shear Behavior of High Strength Concrete Deep Beam)

  • 함영삼;양근혁;이영호;정헌수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.897-902
    • /
    • 2001
  • The purpose of this experimental study is to investigate the shear behavior of high-strength concrete deep beam and to grasp the conservatism of ACI Building Code. Experimental results on 12 deep beams under two equal symmetrically placed point loads are reported. Main variables are vertical and horizontal web reinforcement and shear span-to-overall depth ratio. Test results indicated that web reinforcement dose not affect on formation of inclined cracks but shear span-to-overall depth ratio affect on inclined shear cracks and ultimate shear strength. Addition of vertical web reinforcement improves ultimate shear strength of H.S.C. deep beams that shear span-to-overall depth ratio is 1.0. Considerable increase in ultimate shear strength of H.S.C. deep beams with increasing horizontal web reinforcement that shear span-to-overall depth ratio is 0.5. Especially with increasing concrete strength($f_{ck}$) the ACI code is conservative in estamating the ultimate shear strength of deep beams.

  • PDF

전단경간비와 주인장철근비가 철근콘크리트 보의 최소전단철근비에 미치는 영향 (Effects of Shear Span-to-depth Ratio and Tensile Longitudinal Reinforcement Ratio on Minimum Shear Reinforcement Ratio of RC Beams)

  • 이정윤;김욱연;김상우;이범식
    • 콘크리트학회논문집
    • /
    • 제16권6호
    • /
    • pp.795-803
    • /
    • 2004
  • 현행 구조설계기준식에서는 취성적으로 파괴하는 최소전단보강철근 파괴를 방지하기 위하여 철근콘크리트 보에 최소전단보강철근을 배근하도록 규정하고 있다. 최소전단철근비는 콘크리트의 압축강도와 함께 주인장철근비와 전단경간비에 영향을 받는다. 이 연구에서는 주인장철근비와 전단경간비가 철근콘크리트 보의 최소전단철근비에 미치는 영향을 파악하기 위하여 14개의 철근콘크리트 보를 실험하였다. 실험에 의하면 전단 여유율은 주인장철근비가 증가할수록 증가하였고, 전단경간비가 증가할수록 감소하였다. 실험 결과는 ACI 318-02 기준식과 선행 연구의 제안식과 비교되었다.

Design for shear strength of concrete beams longitudinally reinforced with GFRP bars

  • Thomas, Job;Ramadassa, S.
    • Structural Engineering and Mechanics
    • /
    • 제53권1호
    • /
    • pp.41-55
    • /
    • 2015
  • In this paper, a model for the evaluation of shear strength of fibre reinforced polymer (FRP)-reinforced concrete beams is given. The survey of literature indicates that the FRP reinforced beams tested with shear span to depth ratio less than or equal to 1.0 is limited. In this study, eight concrete beams reinforced with GFRP rebars without stirrups are cast and tested over shear span to depth ratio of 0.5 and 1.75. The concrete compressive strength is varied from 40.6 to 65.3 MPa. The longitudinal reinforcement ratio is varied from 1.16 to 1.75. The experimental shear strength and load-deflection response of the beams are determined and reported in this paper. A model is proposed for the prediction of shear strength of beams reinforced with FRP bars. The proposed model accounts for compressive strength of concrete, modulus of FRP rebar, longitudinal reinforcement ratio, shear span to depth ratio and size effect of beams. The shear strength of FRP reinforced concrete beams predicted using the proposed model is found to be in better agreement with the corresponding test data when compared with the shear strength predicted using the eleven models published in the literature. Design example of FRP reinforced concrete beam is also given in the appendix.

FRP 보강근을 사용한 콘크리트 보의 콘크리트 전단강도 (Concrete Shear Strength of FRP Reinforced Concrete Beam)

  • 조재민;장희석;김명식;김충호
    • 대한토목학회논문집
    • /
    • 제29권3A호
    • /
    • pp.259-266
    • /
    • 2009
  • 본 연구에서는 전단보강이 없는 FRP 보강근을 사용한 콘크리트 보의 제작 및 파괴실험을 통하여 FRP bar와 철근의 탄성계수비, 휨보강근비 및 전단지간비의 영향을 동시에 고려하여 콘크리트 전단강도를 평가할 수 있는 수식을 제안하였다. 실험변수로서 2종류의 FRP bar, 3종류의 전단지간비 및 3종류의 휨보강근비를 사용하였으며, 총 36개의 FRP 보강근을 사용한 콘크리트 보를 제작하고 4점 휨 실험을 수행하였다. 전단지간비의 영향을 상세히 분석하기 위하여 앞서 연구된 2종류의 전단지간비에 대한 실험결과를 인용하였다. 실험자료들을 회귀분석하여 콘크리트 전단강도 계산에 필요한 전단강도보정계수를 구하는 수식을 제안하였다. 제안된 수식의 검증을 하기 위하여 여러 문헌으로부터 조사된 31개의 실험결과에 대하여 본 연구의 제안식과 다른 연구자들이 제안한 수식들을 함께 적용하여 비교 분석하였다. 그 결과, 본 연구에서 제안된 수식은 실험결과에 가장 근접하는 결과를 주는 것을 알 수 있었다.

경간비와 헌치 기울기 변화에 따른 철근콘크리트 헌치보의 전단성능에 관한 연구 (Shear Capacity of Reinforced Concrete Haunched Beams by Shear Span-to-Depth Ratio and Haunch Slope)

  • 송호산
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권1호
    • /
    • pp.119-129
    • /
    • 2002
  • Reinforced concrete haunched beams have been used for enhancement of shear resistance of beams to avoid the stress concentration. But American and British codes do not give my formula for the design of haunched beams. The purpose of this research is to experimentally investigate the shear failure of reinforced concrete punched beams for various haunch inclinations and shear span-to-depth ratios. The experimental results showed that even though shear behavior of haunched beam were similar to that of resembled rectangular beams, shear span-to-depth ratios and inclinations of haunch had effects on shear cracking strength.

Behavior of reinforced concrete corbels

  • Lu, Wen-Yao;Lin, Ing-Jaung
    • Structural Engineering and Mechanics
    • /
    • 제33권3호
    • /
    • pp.357-371
    • /
    • 2009
  • Test results of thirteen reinforced concrete corbels with shear span-to-depth ratio greater than unity are reported. The main variables studied were compressive strength of concrete, shear span-to-depth ratio and parameter of vertical stirrups. The test results indicate that the shear strengths of corbels increase with an increase in compressive strength of concrete and parameter of vertical stirrups. The shear strengths of corbels also increase with a decrease in shear span-to-depth ratio. The smaller the shear span-to-depth ratio of corbel, the larger the stiffness and the shear strength of corbel are. The higher the concrete strength of corbel, the higher the stiffness and the shear strength of corbel are. The larger the parameter of vertical stirrups, the larger the stiffness and the shear strength of corbel are. The softened strut-and-tie model for determining the shear strengths of reinforced concrete corbels is modified appropriately in this paper. The shear strengths predicted by the proposed model and the approach of ACI Code are compared with available test results. The comparison shows that the proposed model can predict more accurately the shear strengths of reinforced concrete corbels than the approach of ACI Code.