• 제목/요약/키워드: shear stud spacing

검색결과 24건 처리시간 0.021초

Bond-slip effect in steel-concrete composite flexural members: Part 2 - Improvement of shear stud spacing in SCP

  • Lee, WonHo;Kwak, Hyo-Gyoung;Kim, Joung Rae
    • Steel and Composite Structures
    • /
    • 제32권4호
    • /
    • pp.549-557
    • /
    • 2019
  • The use of shear studs usually placed in the form of mechanical shear connectors makes it possible to adopt composite steel-concrete structures in various structures, and steel-concrete plate composite (SCP) is being seriously considered for the installation of storage tanks exposed to harsh environments. However, manufacturing of SCP must be based on the application of existing design guidelines which require very close arrangement of shear studs. This means that the direct application of current design guidelines usually produces very conservative results and close arrangement of shear studs precludes pouring concrete within exterior steel faceplates. In this light, an improved guideline to determine the stud spacing should be introduced, and this paper proposes an improved ratio of the stud spacing to the thickness of steel plate on the basis of numerous parametric studies to evaluate the relative influence of the stud spacing on the stability of the SCP.

Shear mechanical behavior of prefabricated and assembled multi-key group stud connectors

  • Liang Fan;Wen Zeng;Wenhao Zhao;Mengting Wang
    • Steel and Composite Structures
    • /
    • 제51권1호
    • /
    • pp.9-24
    • /
    • 2024
  • In order to study the shear mechanical behavior of prefabricated and assembled multi-key group stud connectors, this paper conducted push-out tests on 10 prefabricated and assembled multi-key group stud connectors, distributed in 5 groups, and detailed the failure modes of each specimen. Based on the finite element software, a total of 22 models of this type of stud connector are established, and validated the finite element models using the push-out tests. Furthermore, the effects of stud diameter, number of key groups, and spacing of key groups on the shear resistance of prefabricated and assembled multi-key group stud connectors are analyzed. Combined with the test and finite element, the force analysis is carried out for the stud and first-pouring and post-pouring concrete. The results show that the spacing and number of key groups have a significant impact on the shear capacity and shear stiffness of the specimen. For a single stud, the shear force is transferred to the surrounding concrete via the stud's root. When the stud is finally cut, the steel and the concrete plate are separated. Under vertical shear force, the top row of studs experiences the highest shear, while the middle row has the least. Based on statistical regression, a formula of assembled multi-key group stud connectors is proposed.

Effects of Stud Spacing, Sheathing Material and Aspect-ratio on Racking Resistance of Shear Walls

  • Jang, Sang Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • 제30권3호
    • /
    • pp.97-103
    • /
    • 2002
  • This study was carried out to obtain basic information on racking resistance of shear walls and the factors affecting racking resistance of shear walls. Shear walls constructed by larch lumber nominal 50 mm × 100 mm framing and various sheathing materials were tested by applying monotonic and cyclic load functions. Shear walls with various stud spacing such as 305 mm, 406 mm, and 610 mm were tested under both of monotonic and cyclic loads and shear walls with various aspect (height-width) ratios were tested under cyclic load functions. The effect of hold-down connectors in shear walls was also tested under cyclic load functions. Racking resistance of shear walls has very close linear relation with stud spacing and width of shear walls. The ultimate racking strength of shear walls was reached at around or before the displacement of 20 mm. It was proposed in this study that the minimum racking strength and minimum width for shear wall be 500 kgf and 900 mm, respectively. Load-displacement curves obtained by racking tests under monotonic load functions can be represented by three straight line segments. Under cyclic load functions, envelope curves can be divided into three sections that can be represented by straight lines and the third section showed almost constant or decreasing slope.

Experimental and numerical study on static behavior of grouped large-headed studs embedded in UHPC

  • Hu, Yuqing;Zhao, Guotang;He, Zhiqi;Qi, Jianan;Wang, Jingquan
    • Steel and Composite Structures
    • /
    • 제36권1호
    • /
    • pp.103-118
    • /
    • 2020
  • The static behavior of grouped large-headed studs (d = 30 mm) embedded in ultra-high performance concrete (UHPC) was investigated by conducting push-out tests and numerical analysis. In the push-out test, no splitting cracks were found in the UHPC slab, and the shank failure control the shear capacity, indicating the large-headed stud matches well with the mechanical properties of UHPC. Besides, it is found that the shear resistance of the stud embedded in UHPC is 11.4% higher than that embedded in normal strength concrete, indicating that the shear resistance was improved. Regarding the numerical analysis, the parametric study was conducted to investigate the influence of the concrete strength, aspect ratio of stud, stud diameter, and the spacing of stud in the direction of shear force on the shear performance of the large-headed stud. It is found that the stud diameter and stud spacing have an obvious influence on the shear resistance. Based on the test and numerical analysis results, a formula was established to predict the load-slip relationship. The comparison indicates that the predicted results agree well with the test results. To accurately predict the shear resistance of the stud embedded in UHPC, a design equation for shear strength is proposed. The ratio of the calculation results to the test results is 0.99.

전단력과 축하중을 받는 강판 콘크리트(SC) 벽체에서 스터드의 형상과 배치간격의 설계를 위한 해석적 연구 (Analytical Study for Design of Shape and Arrangement Spacing of Studs in Steel Plate Concrete(SC) Wall subjected to Shear and Axial Forces)

  • 조성국;임진선;정영도;이성태
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제18권4호
    • /
    • pp.67-76
    • /
    • 2014
  • 이 연구에서는 SC 전단벽의 전단 연결재인 스터드의 배치와 형상이 SC 전단벽의 거동에 미치는 영향을 살펴보기 위해 전단벽체가 전단력과 축하중을 받을 때의 거동을 해석적으로 검토하였다. 이를 위해 서로 다른 형상과 배열의 스터드가 배열된 SC 전단벽을 대상으로 유한요소해석을 수행하였다. 스터드의 간격이 과하게 떨어져 있을 경우 합성거동이 완벽하게 작용하지 못하며 강판이 설계곡선의 2차 항복 전단력 보다 적은 하중에서 항복함을 확인하였다. 스터드의 형상은 일반형 스터드뿐만 아니라 개선된 경사형 스터드도 전단거동에 큰 차이를 나타내지 않았고, 스터드의 간격이 합성거동에 영향을 미침을 확인하였다. 또한 이 연구를 통하여 경사형 스터드가 일반형 스터드에 비해 좌굴을 제어하는데 효과가 있음을 확인하였다.

전단연결재 강도산정 영향인자에 대한 연구 (A Study on Factors Influencing the Shear Strength of Shear Connectors)

  • 여진호;임남형;강영종
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.1091-1096
    • /
    • 2001
  • Generally, in a steel girder and the concrete slab act as a composite structure, the connectors must have adequate strength and stiffness. If there are no horizontal or vertical separations at the interface, the connectors are described as rigid, and complete interaction can be said to exist under these idealized circumstances. In previous study, it was considered that the strength of stud is affected by the stud diameter, height of stud and compressive strength of concrete. The differences between previous study and this study are variables, which are shank diameter of shear connector, the spacing of shear connector, the size of specimen and the row of shear connector. So this paper, as a study on the strength of shear connector with the spacing of shear connector, size of specimen (block-out size), row of shear connector and shank diameter of shear connector resulted from the push-out specimen are conducted with ABAQUS program. It is to investigate the effects of characteristics of these factors. The load-slip relations obtained from the experiments are compared with those of analyses. From these results, the trends of stress are stress estimated and compared with push-out test.

  • PDF

Stud connection in composite structures: development with concrete age

  • Chengqian Wen;Guotao Yang
    • Steel and Composite Structures
    • /
    • 제47권6호
    • /
    • pp.729-741
    • /
    • 2023
  • As the most popular shear connection in composite structures, mature concrete has been widely investigated by considering mechanical properties of stud connectors (SCs) embedded. To further enhance the fabrication efficiency of composite structures and solve the contradiction between construction progress and structural performance, it is required to analyze the shear performance of stud connections of composite structures with different concrete ages. 18 typical vertical push-out tests were carried out on stud shear connectors at concrete ages of 7 days, 14 days, and 28 days. Also, the effects of concrete age, stud spacing and stud diameter on the shear capacity, connection stiffness and failure mode of the connectors were studied. A new relationship expression of load-slip for SCs with various concrete ages was proposed. The existing design code for the SCs shear strength was evaluated according to the experimental data, and a more practical prediction equation for the shear capacity of SCs with different concrete ages was established. A great agreement was observed between the experimental and theoretical results, which can provide a reference for engineering practices.

프리캐스트 콘크리트 바닥판 교량의 그룹 스터드 전단연결부 강도평가 (Evaluation of Static Strength of Group Stud Shear Connection in Precast Concrete Deck Bridges)

  • 심창수;전승민;김동욱
    • 한국강구조학회 논문집
    • /
    • 제20권2호
    • /
    • pp.333-345
    • /
    • 2008
  • 프리캐스트 콘크리트 바닥판 교량의 적용이 2거더 교량이나 개구제형 강박스 교량으로 확대되고 있다. 소수거더교에 프리캐스트 바닥판 교량의 적용에서 가장 어려운 점은 완전합성을 확보하기 위해 필요한 전단연결재의 배치이다. 좁은 영역에 많은 연결재를 배치해야 하기 때문에 프리캐스트 바닥판의 단면 손실이 커서 철근의 배치가 어렵게 된다. 이 논문에서는 현재 설계 기준에서 제시하고 있는 스터드 전단연결재의 최소 간격보다 좁은 연결재 간격을 가질 경우의 극한 강도 특성을 정적 실험을 통해 평가하였다. 실험결과로부터 최소 간격보다 좁은 간격으로 배치할 경우에 현재의 설계기준 강도보다 낮은 극한 강도를 발현하는 것으로 나타났고 프리캐스트 슬래브의 보강 혹은 포켓부의 부분보강의 효과로 인해 강도 증진이 나타났다. 그룹 스터드 전단연결부의 설계는 연결재 전단강도와 콘크리트 슬래브의 강도의 상대적인 비로부터 파괴모드를 예측하고 연결재 파괴를 유도할 수 있도록 이루어져야 한다. 실험결과로부터 스터드 간격을 고려한 그룹 스터드 전단연결부의 극한강도에 대한 경험식을 제안하였다. 피로실험을 수행한 결과로부터 이 연구의 실험범위내에서는 그룹스터드 전단연결부의 피로강도 감소가 나타나지 않는 것으로 밝혀졌다. 연구결과를 활용하여 프리캐스트 바닥판의 상세를 개선하였다.

Analytical performance evaluation of modified inclined studs for steel plate concrete wall subjected to cyclic loads

  • Lim, Jin-Sun;Jeong, Young-Do;Nam, Jin-Won;Kim, Chun-Ho;Yi, Seong-Tae
    • Computers and Concrete
    • /
    • 제17권2호
    • /
    • pp.227-240
    • /
    • 2016
  • An analytical study was conducted to investigate the effect of the shape and spacing of modified inclined studs used as shear connector between concrete and steel plate on the cyclic behavior of steel plate concrete (SC) shear wall. 9 different analysis cases were adopted to determine the optimized shape and spacing of stud. As the results, the skeleton curves were obtained from the load-displacement hysteresis curves, and the ultimate and yielding strengths were increased as the spacing of studs decrease. In addition, the strength of inclined studs is shown to be bigger compared to that of conventional studs. The damping ratios increased as the decrease of stiffness ratio. Finally, with decreasing the spacing distance of studs, the cumulative dissipated energy was increased and the seismic performance was improved.

Static behaviour of multi-row stud shear connectors in high- strength concrete

  • Su, Qingtian;Yang, Guotao;Bradford, Mark A.
    • Steel and Composite Structures
    • /
    • 제17권6호
    • /
    • pp.967-980
    • /
    • 2014
  • In regions of high shear forces in composite bridges, headed stud shear connectors need to be arranged with a small spacing in order to satisfy the design requirement of resisting the high interface shear force present at this location. Despite this, studies related to groups of headed studs are somewhat rare. This paper presents an investigation of the static behaviour of grouped stud shear connectors in high-strength concrete. Descriptions are given of five push-out test specimens with different arrangements of the studs that were fabricated and tested, and the failure modes, load-slip response, ultimate load capacities and related slip values that were obtained are reported. It is found that the load-slip equation given by some researchers based on a single stud shear connector in normal strength concrete do not apply to grouped stud shear connectors in high-strength concrete, and an algebraic load-slip expression is proposed based on the test results. Comparisons between the test results and the formulae provided by some national codes show that the equations for the ultimate capacity provided in these codes are conservative when used for connectors in high-strength concrete. A reduction coefficient is proposed to take into account the effect of the studs being in a group.