DOI QR코드

DOI QR Code

Analytical Study for Design of Shape and Arrangement Spacing of Studs in Steel Plate Concrete(SC) Wall subjected to Shear and Axial Forces

전단력과 축하중을 받는 강판 콘크리트(SC) 벽체에서 스터드의 형상과 배치간격의 설계를 위한 해석적 연구

  • 조성국 ((주)제이스코리아 기술연구소) ;
  • 임진선 (서울연구원 안전환경연구실) ;
  • 정영도 (포스코건설 R&D센터 기술연구소) ;
  • 이성태 (인하공업전문대학 토목환경과)
  • Received : 2014.02.04
  • Accepted : 2014.03.21
  • Published : 2014.07.30

Abstract

In this study, the behavior of Steel Plate Concrete (SC) walls subjected to shear and axial forces to investigate the effects of shape and arrangement spacing of studs on the design of SC walls was analytically reviewed. For this purpose, 9 cases of finite element analyses considering the different shape and spacing of studs in SC wall were performed. The results showed that the steel plate was yielded at the lower load than the second yielding shear force of the design skeleton curve when the spacing of stud is excessively far from each other. It is also found that the shape of the stud did not affect the shear behavior of SC wall but, the spacing influenced to its composite action. In this study, it was also proven that the inclined shaped stud resists more effectively to the bucking load than the general shaped stud in SC wall.

이 연구에서는 SC 전단벽의 전단 연결재인 스터드의 배치와 형상이 SC 전단벽의 거동에 미치는 영향을 살펴보기 위해 전단벽체가 전단력과 축하중을 받을 때의 거동을 해석적으로 검토하였다. 이를 위해 서로 다른 형상과 배열의 스터드가 배열된 SC 전단벽을 대상으로 유한요소해석을 수행하였다. 스터드의 간격이 과하게 떨어져 있을 경우 합성거동이 완벽하게 작용하지 못하며 강판이 설계곡선의 2차 항복 전단력 보다 적은 하중에서 항복함을 확인하였다. 스터드의 형상은 일반형 스터드뿐만 아니라 개선된 경사형 스터드도 전단거동에 큰 차이를 나타내지 않았고, 스터드의 간격이 합성거동에 영향을 미침을 확인하였다. 또한 이 연구를 통하여 경사형 스터드가 일반형 스터드에 비해 좌굴을 제어하는데 효과가 있음을 확인하였다.

Keywords

References

  1. Carreira, D. J., Chu, K. H. (1985), Stress-strain Relationship for Plain Concrete in Compression, ACI Journal, American Concrete Institute, 82(6), 797-804.
  2. Cho, S. G., Lim, J. S., Jeong, Y. D., Yi, S. T. (2014), Analytical Study for Performance Improvement of Studs for Steel Plate Concrete(SC) Walls subjected to Bending Moment, Journal of the Korea Institute for Structural Maintenance and Inspection, KSMI, 18(2), 74-81 (in Korean). https://doi.org/10.11112/jksmi.2014.18.2.074
  3. Evans, R. H., Marathe, M. S. (1967), Microcracking and Stress-strain Curves for Concrete in Tension, Materials and Structures, 1(1), 61-64.
  4. Gattesco N., Giuriani E. (1996), Experimental Study on Stud Shear Connectors subjected to Cyclic Loading, Journal of Constructional Steel Research, 38(1), 1-21. https://doi.org/10.1016/0143-974X(96)00007-7
  5. Hong, S. G., Lee, S. J., Lee, S. J., Lee, E. J., Kim, W. K. (2011), Shear Strength of Composite Steel-Concrete Walls with Vertical Ribs, fib Symposium in Prague: Concrete Engineering for Excellence and Efficiency, Session 5-4: Composites and Hybrids, Federation International du Beton, Chezch, 1-11.
  6. Jankowiak, T., Lodygowski, T. (2005), Identification of Parameters of Concrete Damage Plasticity Constitutive Model, Foundation of Civil and Environmental Engineering, Poznan University of Technology, Poland, 1(6), 53-69.
  7. Kanchi, M. (1996), Experimental Study on A Concrete Filled Steel Structure Part. 2 Compressive Tests (1), Summary of Technical Papers of Annual Meeting, Architectural Institute of Japan, Structures, 1071-1072.
  8. Korea Concrete Institute (KCI) (2012), The Korean Concrete Structure Design Code, Korea Concrete Institute (in Korean).
  9. Korea Electric Association (KEA) (2010), Nuclear Safety Related Structures : Steel-Plate Concrete Structure: KEPIC-SNG, Korea Electric Association.
  10. Lee, P. G., Shim, C. S., Yoon, T. Y. (2003), Static Behavior of Large Stud Connectors, Journal of Korean Society of Steel Structure, KSSC, 15(6), 611-620 (in Korean).
  11. Nguyen, H. T., Kim, S. E. (2009), Finite Element Modeling of Push-Out Test for Large Stud Shear Connectors, Journal of Constructional Steel Research, 65(10), 1909-1920. https://doi.org/10.1016/j.jcsr.2009.06.010
  12. Oehlers, D. J., Coughlan, C. G. (1986), The Shear Stiffness of Stud Shear Connections in Composite Beams, Journal of Construction Steel Research, 6(4), 273-284. https://doi.org/10.1016/0143-974X(86)90008-8
  13. Ollgaard, J. G., Slutter, R. G., Fisher, J. W. (1971), Shear Strength of Stud Connectors in Lightweight and Normal-Weight Concrete, AISC Engineering Journal, 8(2), 55-64.
  14. Ozaki, M., Akita, S., Oosuga, H., Nakayama, T., Adachi, N. (2004), Study on Steel Plate Reinforced Concrete Panels Subjected to Cyclic In-Plane Shear, Nuclear Engineering and Design, 228(1), 225-244. https://doi.org/10.1016/j.nucengdes.2003.06.010
  15. Prakash, A., Anandavalli, N., Madheswaran, C. K., Rajasankar, J., Lakshmanan, N. (2011), Three Dimensional FE Model of Stud Connected Steel-Concrete Composite Girders Subjected to Monotonic Loading, International Journal of Mechanics and Applications, 1(1), 1-11.
  16. Varma, A. H., Malushte, S. R., Sener, K. C., Booth, P. N. (2012), Analysis Recommendations for Steel-Composite (SC) Walls of Safety Related Nuclear Facilities, Structures Congress of ASCE, 1871-1880.
  17. Zhang, K., Varma, A. H., Malushte, S. R., Gallocher, S. (2014) Effect of Shear Connectors on Local Buckling and Composite Action in Steel Concrete Composite Wall, Nuclear Engineering and Design (in press).

Cited by

  1. Use of inclined studs in steel-plate–concrete composite walls with shear and axial loading vol.170, pp.7, 2017, https://doi.org/10.1680/jstbu.15.00107
  2. Analytical Study for Performance Improvement of Studs for Steel Plate Concrete(SC) Walls subjected to Combined Loads vol.19, pp.2, 2015, https://doi.org/10.11112/jksmi.2015.19.2.108
  3. Analytical Study for Performance Evaluation of Studs for Steel Plate Concrete(SC) Walls subjected to Cyclic Loads vol.19, pp.4, 2015, https://doi.org/10.11112/jksmi.2015.19.4.035