DOI QR코드

DOI QR Code

Shear mechanical behavior of prefabricated and assembled multi-key group stud connectors

  • Liang Fan (School of Civil Engineering, Chongqing Jiaotong University) ;
  • Wen Zeng (School of Civil Engineering, Chongqing Jiaotong University) ;
  • Wenhao Zhao (School of Civil Engineering, Chongqing Jiaotong University) ;
  • Mengting Wang (School of Civil Engineering, Chongqing Jiaotong University)
  • Received : 2023.04.14
  • Accepted : 2024.03.22
  • Published : 2024.04.10

Abstract

In order to study the shear mechanical behavior of prefabricated and assembled multi-key group stud connectors, this paper conducted push-out tests on 10 prefabricated and assembled multi-key group stud connectors, distributed in 5 groups, and detailed the failure modes of each specimen. Based on the finite element software, a total of 22 models of this type of stud connector are established, and validated the finite element models using the push-out tests. Furthermore, the effects of stud diameter, number of key groups, and spacing of key groups on the shear resistance of prefabricated and assembled multi-key group stud connectors are analyzed. Combined with the test and finite element, the force analysis is carried out for the stud and first-pouring and post-pouring concrete. The results show that the spacing and number of key groups have a significant impact on the shear capacity and shear stiffness of the specimen. For a single stud, the shear force is transferred to the surrounding concrete via the stud's root. When the stud is finally cut, the steel and the concrete plate are separated. Under vertical shear force, the top row of studs experiences the highest shear, while the middle row has the least. Based on statistical regression, a formula of assembled multi-key group stud connectors is proposed.

Keywords

Acknowledgement

The research described in this paper was financially supported by the National Natural Science Foundation of China (No: U20A20312); Chongqing Technical Innovation and Application Development Special Key Project (NO: CSTB2022TIAD-KPX0103).

References

  1. Cao, J. and Shao, X. (2019), "Finite element analysis of headed studs embedded in thin UHPC", J. Construct. Steel Res., 161(C), 355-368. https://doi.org/10.1016/j.jcsr.2019.03.016.
  2. Chapman, J.C. and Balakrishman, S. (1964), "Experiments on composite beam", Struct. Eng., 42(02), 369-383.
  3. Deng, W.Q., Hu, K.W., Liu, D., Zhao, X.B., Zha, S. and Zhang, J.D. (2022), "Experimental study and calculation method of shear capacity of cluster stud connectors", China J. Highway Transport, 35(10), 194-204. https://doi.org/10.19721/j.cnki.1001-7372.2022.10.018.
  4. Dennis, L. (2006), "Capacities of headed stud shear connectors in composite steel beams with precast hollowcore slabs", J. Construct. Steel Res., 63(9), 1160-1174. https://doi.org/10.1016/j.jcsr.2006.11.012.
  5. Ding, J.N., Zhu, J.S., Kang, J.F. and Wang, X.C. (2021), "Experimental study on grouped stud shear connectors in precast steel-UHPC composite bridge", Eng. Struct., 242, 1-11. https://doi.org/10.1016/J.ENGSTRUCT.2021.112479.
  6. Doinghaus, P., Goralski, C. and Will, N. (2003), "Design rules for composite structures with high performance steel and high-performance concrete", High Perform. Mater. Bridges, 13, 139-149. https://doi.org/10.1061/40691(2003)13.
  7. Du, D.R., Li, A.Q., Chen, L.H., Shi, Q.Y., Xiao, H., Lou, Y. and Li, B. (2006), "Experimental Study on Steel Encased Concrete Composite Beam", Build. Struct., 36(04), 64-67. https://doi.org/10.19701/j.jzjg.2006.04.022.
  8. Ehab, E. and Ben, Y. (2006), "Performance of shear connection in composite beams with profiled steel sheeting", J. Construct. Steel Res., 62(07), 682-694. https://doi.org/10.1016/j.jcsr.2005.11.004.
  9. Eurocode 4 (2004), Design of Composite Steel and Concrete Structures. Part I-1: General Rules and rules for Buildings, European Committee for Standardization(CEN), Brussels, Belgium.
  10. Fan, L., Li, H.Y. and Guo, S.J. (2019), "Development and application of strain-type cross-section misalignment testing device", Experim. Technol. Manage., 36(12), 77-80. https://doi.org/10.16791/j.cnki.sjg.2019.12.018.
  11. Fan, L., Li, H.Y. and Yang, G. (2019), Strain Type Structure Cross Section Error Test Equipment, China, CN201811627333.1.2019.
  12. Fan, L., Wu, J.H. and Tan, Y. (2022), "Research on interface slip properties of assembled steel-concrete composite beams with cluster nail groups", Build. Struct., 18, 86-91. https://doi.org/10.19701/j. 52jzjg.20201389.
  13. Fan, L., Zhao, F.Y. and Li, H.Y. (2022), "Experimental study on shear stiffness of group stud shear keys in prefabricated composite beams", Progress Steel Build. Struct., 24(08), 28-34. https://doi.org/10.13969/j.cnki.cn31-1893.2022.08.003.
  14. Fang, Z.C. (2021), "Study on interface shear behavior of innovative shear connection in steel-precast UHPC composite beams", Ph.D. Dissertation, Guangdong University of Technology, Guangdong.
  15. Fang, Z.C., Jiang, H.B., Chen, G.F., Dong, X.T. and Shao, T.F. (2020), "Behavior of grouped stud shear connectors between precast high-strength concrete slabs and steel beams", Steel Compos. Struct., 34(06), 837-851. https://doi.org/10.12989/scs.2020.34.6.837.
  16. GB50010-2010 (2011), Code for Design of Composite Structures, Ministry of housing and urban rural development of the people s republic of China; Beijing, China.
  17. Guo, Z.H. and Wang, C.Z. (1991), "Investigation of strength and failure criterion of concrete under multi-axial stresses", China Civil Eng. J., 24(03), 1-14. https://doi.org/10.15951/j.tmgcxb.1991.03.001.
  18. Guo, Z.H., Guo, Y.T., Xu, Y., Ye, X.G. and Li, W.Z. (1997), "Nonlinear elastic orthotropic constitutive model for concrete", J. Tsinghua Univ., 3(06), 78-81. https://doi.org/10.16511/j.cnki.qhdxxb.1997.06.021.
  19. Guo, Z.H., Zhang, X.Q., Zhang, D.C. and Wang, R.Q. (1982), "Experimental study on full stress-strain curve of concrete", J. Build. Struct., 25(01), 1-12. https://doi.org/10.14006/j.jzjgxb.1982.01.001.
  20. JGJ138-2016 (2016), Code for Design of Concrete Structures, Ministry of Housing and Urban Rural Development of the People s Republic of China, Beijing, China.
  21. Ji, J., Zeng, W. and Jiang, L.Q. (2021), "Hysteretic behavior on asymmetrical composite joints with concrete-filled steel tube columns and unequal high steel beams", Symmetry, 13(12), 1-26. https://doi.org/10.3390/sym13122381.
  22. Johnson, R.P., Greenwood, R.D. and Van, D.K. (1969), "Stud shear connectors in hogging moment regions of composite beams", Struct. Eng., 47(03), 345-350.
  23. Kuang, Y.Z., Chen, L.B., Li, C.J. and He, Y.H. (2022), "Analysis of mechanical properties of stud shear connectors", J. Jilin University (Engineering and Technology Edition), 53(02), 1-8. https://doi.org/10.13229/j.cnki.jdxbgxb.20210739.
  24. Lee, P.G., Shim, C.S. and Chang, S.P. (2005), "Static and fatigue behavior of large stud shear connectors for steel concrete composite bridges", J. Construct. Steel Res., 61(09), 1270-1285. https://doi.org/10.1016/j.jcsr.2005.01.007.
  25. Li, H., Liu, Y.J., Zhang, N. and Liu, J. (2019), "Experimental study on shear performance of stud shear connector after undergoing freeze-thaw cycles", J. Build. Struct., 40(05), 149-155. https://doi.org/10.14006/j.jzjgxb.2019.05.015.
  26. Li, L. (2019), Principle and Application of Statistics, Nanjing University Press, Nanjing, NY, China.
  27. Li, Y.J., Wu, H.W., Feng, B.W., Zhang, Z.J. and Lu, L.W. (2020), "Tensile effect of welding studs in transverse direction of twin-I steel composite girder bridge under wheel load", J. Architect. Civil Eng., 37(02), 1-10. https://doi.org/10.19815/j.jace.2019.09032.
  28. Liu, J.P., Zhou, B.X., Yu, J. and Wang, Y.H. (2017), "Experimental study on mechanical behavior of shear studs in assembled monolithic steel-concrete composite beam", J. Build. Struct., 38(S1), 337-341. https://doi.org/10.14006/j.jzjgxb.2017.S1.047.
  29. Mander, J.B., Priestley, M.J.N. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Eng., 114(08), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804).
  30. Nie, J.G., Shen, J.M., Yuan, M.S., Lin, W. and Wang, W.H. (1996), "Study on actual bearing capacity of shear connectors in steel-concrete composite beams", J. Build. Struct., 17(02), 21-28. https://doi.org/10.14006/j.jzjgxb.1996.02.004.
  31. Nie, J.G., Tao, M.X., WU, L.L., Nie, X., Li, F.X. and Lei, F.L. (2012), "Advances of research on steel-concrete composite bridges", China Civil Eng. J., 45(06), 110-122. https://doi.org/10.15951/j.tmgcxb.2012.06.003.
  32. Qi, J., Hu, Y. and Wang, J. (2019), "Behavior and strength of headed stud shear connectors in ultra-high performance concrete of composite bridges", Front. Struct. Civil Eng., 13(05), 1138-1149. https://doi.org/10.1007/s11709-019-0542-6.
  33. Shim, C.S., Lee, P.G. and Yoon, T.Y. (2004), "Static behavior of large stud shear connectors", Eng. Struct., 26(12), 1853-1860. https://doi.org/10.1016/j.engstruct.2004.07.011.
  34. Slutter, R.G. and Fisher, J.W. (1966), "Fatigue strength of shear connectors", Research Report No. 147; Lehigh University, Bethlehem, USA.
  35. Su, Q.T., Han, X. and Ren, F. (2014), "Static behavior of push-out specimen with multi-row stud connectors", J. Tongji University (Natural Science), 42(07), 1011-1016. https://doi.org//10.3969/j.issn.0253-374x.2014.07.004.
  36. Tong, L.W., Chen, L.H., Wen, M. and Xu, C. (2020), "Static behavior of stud shear connectors in high-strength-steel-UHPC composite beams", Eng. Struct., 218(C), 1-15. https://doi.org/10.1016/j.engstruct.2020.110827.
  37. Xu, C., Sugiura, K. and Su, Q.T. (2018), "Fatigue behavior of the group stud shear connectors in steel-concrete composite bridges", J. Bridge Eng., 23(8), 1-13. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001261.
  38. Zheng, Z.L. (2021), "Numerical simulation analysis of group stud connectors in steel-concrete composite structure", Master Dissertation, Changsha University of Science and Technology, Hunan.
  39. Zhou, A., Dai, H. and Liu, Q.W. (2007), "Experiment on ultimate bearing capacity shear rigidity of stud connectors", Ind. Construct., 37(10), 84-87. https://doi.org/10.13204/j.gyjz2007.10.023.
  40. Zhou, X.D. (2018), "Experimental study on mechanical properties of large diameter shear stud connecters in steel-UHPC composite structure", Ph.D. Dissertation, Nanjing Forestry University, Nanjing.
  41. Zhou, Y., Peng, H.B., Zhang, Y.Z., Jiang, J.L. and Yu, K. (2023), "Experimental study on shear performance of PBL shear connector in negative moment region", China Civil Eng. J., 1(01), 1-18. https://doi.org/10.15951/j.tmgcxb.22050488.