• Title/Summary/Keyword: shear slip

Search Result 484, Processing Time 0.027 seconds

Nonlinear analysis of composite beams with partial shear interaction by means of the direct stiffness method

  • Ranzi, G.;Bradford, M.A.
    • Steel and Composite Structures
    • /
    • v.9 no.2
    • /
    • pp.131-158
    • /
    • 2009
  • This paper presents a modelling technique for the nonlinear analysis of composite steel-concrete beams with partial shear interaction. It extends the applicability of two stiffness elements previously derived by the authors using the direct stiffness method, i.e. the 6DOF and the 8DOF elements, to account for material nonlinearities. The freedoms are the vertical displacement, the rotation and the slip at both ends for the 6DOF stiffness element, as well as the axial displacement at the level of the reference axis for the 8DOF stiffness element. The solution iterative scheme is based on the secant method, with the convergence criteria relying on the ratios of the Euclidean norms of both forces and displacements. The advantage of the approach is that the displacement and force fields of the stiffness elements are extremely rich as they correspond to those required by the analytical solution of the elastic partial interaction problem, thereby producing a robust numerical technique. Experimental results available in the literature are used to validate the finite element proposed in the paper. For this purpose, those reported by Chapman and Balakrishnan (1964), Fabbrocino et al. (1998, 1999) and Ansourian (1981) are utilised; these consist of six simply supported beams with a point load applied at mid-span inducing positive bending moment in the beams, three simply supported beams with a point load applied at mid-span inducing negative bending moment in the beams, and six two-span continuous composite beams respectively. Based on these comparisons, a preferred degree of discretisation suitable for the proposed modelling technique expressed as a function of the ratio between the element length and depth is proposed, as is the number of Gauss stations needed. This allows for accurate prediction of the nonlinear response of composite beams.

Seismic behavior of steel truss reinforced concrete L-shaped columns under combined loading

  • Ning, Fan;Chen, Zongping;Zhou, Ji;Xu, Dingyi
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.139-152
    • /
    • 2022
  • Steel-reinforced concrete (SRC) L-shaped column is the vertical load-bearing member with high spatial adaptability. The seismic behavior of SRC L-shaped column is complex because of their irregular cross sections. In this study, the hysteretic performance of six steel truss reinforced concrete L-shaped columns specimens under the combined loading of compression, bending, shear, and torsion was tested. There were two parameters, i.e., the moment ratio of torsion to bending (γ) and the aspect ratio (column length-to-depth ratio (φ)). The failure process, torsion-displacement hysteresis curves, and bending-displacement hysteresis curves of specimens were obtained, and the failure patterns, hysteresis curves, rigidity degradation, ductility, and energy dissipation were analyzed. The experimental research indicates that the failure mode of the specimen changes from bending failure to bending-shear failure and finally bending-torsion failure with the increase of γ. The torsion-displacement hysteresis curves were pinched in the middle, formed a slip platform, and the phenomenon of "load drop" occurred after the peak load. The bending-displacement hysteresis curves were plump, which shows that the bending capacity of the specimen is better than torsion capacity. The results show that the steel truss reinforced concrete L-shaped columns have good collapse resistance, and the ultimate interstory drift ratio more than that of the Chinese Code of Seismic Design of Building (GB50011-2014), which is sufficient. The average value of displacement ductility coefficient is larger than rotation angle ductility coefficient, indicating that the specimen has a better bending deformation resistance. The specimen that has a more regular section with a small φ has better potential to bear bending moment and torsion evenly and consume more energy under a combined action.

Analysis of a Load Carrying Behavior of Shear Connection at the Interface of the Steel-Concrete Composite Beam (합성보 전단연결부의 구조거동에 대한 비교 분석)

  • Shin, Hyun Seop
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.6 s.79
    • /
    • pp.737-747
    • /
    • 2005
  • The connection of the slab with the steel beam and thus, the transmission of shear force at the interface of the steel-concrete composite beams is achieved with shear connectors, in general, with shear studs. The composite action through these shear studs has a significant influence on the load carrying behavior of the composite beams. The load carrying capacity of studs is determined through push-out tests. At present, the transferability of this load carrying capacity of studs to composite beams, especially in cases of partial interaction, is being questioned by experimental and theoretical investigations. In this study, a finite element model for the simulation of the behavior of the standard push-out specimen and the composite beams without the implementation of the load-slip curve of the stud connectors from the push-out test is developed. The load carrying behavior of the studs in the composite beams is estimated and compared with the results of the push-out test. The reason for the difference in the load carrying behavior of the studs in the push-out test specimen and in the composite beams is found.

A Study on the Composite Behavior of Simply Supported Composite Girders Considering the Partial Interaction (불완전 합성율을 고려한 단순합성형의 합성거동에 관한 연구)

  • Yong, Hwan Sun;Kim, Seok Tae;Park, Jae Yil
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.543-555
    • /
    • 1997
  • Generally, in a steel-concrete composite gilder, the shear connector which was constructed between concrete deck and steel girder should have enough stiffness to behave as one body, because the conformity between plate and concrete deck is influences by the stiffness and spacing of the shear connectors. If the stiffness of shear connectors are insufficient, slip would happen at the contact surface. Partial interaction is the case that takes account of slips. In this paper, an easy method is presented to evaluate the stiffness or spacing of the shear connector according to the degree of imperfection without difficult calculations for a composite gilder with partial interaction. Also, the horizontal shearing force applied to the shear connector and the longitudinal axial force, which is occurs at contact surface between concrete deck and steel girder, have been presented in a simple influence line that is various to the parameters of sectional properties, degree of imperfection and applied load points. Furthermore, through the case study, it determined the relationships between the degree of imperfection and the follows 1) spring constants 2) axial force and horizontal shearing force 3) stress and neutral axis by using the partial differential equation based on Newmark's Partial Interaction Theory.

  • PDF

Geometry and Kinematics of the Yeongdeok Fault in the Cretaceous Gyeongsang Basin, SE Korea (한반도 동남부 백악기 경상분지 내 영덕단층의 기하와 운동학적 특성)

  • Seo, Kyunghan;Ha, Sangmin;Lee, Seongjun;Kang, Hee-Cheol;Son, Moon
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.171-193
    • /
    • 2019
  • This study aims to identify the geometry and internal structures of the Yeongdeok Fault, a branch fault of the Yangsan Fault, by detailed mapping and to characterize its kinematics by analyzing the attitudes of sedimentary rocks adjacent to the fault, slip data on the fault surfaces, and anisotropy of magnetic susceptibility (AMS) of the fault gouges. The Yeongdeok Fault, which shows a total extension of 40 km on the digital elevation map, cuts the Triassic Yeongdeok Granite and the Cretaceous sedimentary and volcanic rocks with about 8.1 km of dextral strike-slip offset. The NNW- or N-S-striking Yeongdeok Fault runs as a single fault north of Hwacheon-ri, Yeongdeok-eup, but south of Hwacheon-ri it branches into two faults. The western one of these two faults shows a zigzag-shaped extension consisting of a series of NNE- to NE- and NNW-striking segments, while the eastern one is extended south-southeastward and then merged with the Yangsan Fault in Gangu-myeon, Yeongdeok-gun. The Yeongdeok Fault dips eastward with an angle of > $65^{\circ}$ at most outcrops and shows its fault cores and damage zones of 2~15 m and of up to 180 m wide, respectively. The fault cores derived from several different wall rocks, such as granites and sedimentary and volcanic rocks, show different deformation patterns. The fault cores derived from granites consist mainly of fault breccias with gouge zones less than 10 cm thick, in which shear deformation is concentrated. While the fault cores derived from sedimentary rocks consist of gouges and breccia zones, which anastomose and link up each other with greater widths than those derived from granites. The attitudes of sedimentary rocks adjacent to the fault become tilted at a high angle similar to that of the fault. The fault slip data and AMS of the fault gouges indicate two main events of the Yeongdeok Fault, (1) sinistral strike-slip under NW-SE compression and then (2) dextral strike-slip under NE-SW compression, and shows the overwhelming deformation feature recorded by the later dextral strike-slip. Comparing the deformation history and features of the Yeongdeok Fault in the study area with those of the Yangsan Fault of previous studies, it is interpreted that the two faults experienced the same sinistral and dextral strike-slip movements under the late Cretaceous NW-SE compression and the Paleogene NE-SW compression, respectively, despite the slight difference in strike of the two faults.

Non-Newtonian thermal Effects in Elastohydrodynamic Lubrication between the Two Rolling Systems

  • Kim, Joon-Hyun;Kim, Joo-Hyun
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.87-88
    • /
    • 2002
  • To analyze complicated phenomena on the fluid hydrodynamic and the elastic deformation between sliding body surfaces, an analysis to the elastohydrodynamic lubrication of sliding contacts has been developed taking into account the thermal and non-Newtonian effects. The computational technique handled the simultaneous solution of the non-Newtonian hydrodynamic effects, elasticity, the load, the viscosity variation, and temperatures rise. The results included the lubricant pressure profile, film thickness, velocity, shear stress, and temperature distribution, and the sliding frictional force on the surface at various slip conditions. These factors showed a great influence on the behavior resulted in the film shape and pressure distribution. Especially, Non-Newtonian effects and temperature rise by the sliding friction force acted as important roles in the lubrication performance.

  • PDF

Modeling of Noncomposite Skew Plate Girder Bridges (비합성형 판형사교의 모형화)

  • Moon, Seong-Kwon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.505-510
    • /
    • 2008
  • The design of noncomposite construction for skew bridges with large skew angels has been often checked because composite construction may cause large stresses in the bridge deck. In this study, the analytical model considered dynamic behaviors for noncomposite skew bridges was proposed. Using the proposed analytical model, the effects of interactions between the concrete deck and steel girders such as composite construction, and noncomposite construction on the dynamic characteristics of simply supported skew bridges were investigated. A series of parametric studies for the total 27 skew bridges was conducted with respect to parameters such as girder spacing, skew angle, and deck aspect ratio. The slip at the interfaces between the concrete deck and steel girders may bring about longer vibration periods that result in the reduced total seismic base shear.

  • PDF

Two Dimensional Elastic Finite Element Analysis for Fretting Contacts (프레팅 접촉에 대한 2차원 유한요소 탄성해석)

  • Jang Song-Koon;Rho Hong-Rae;Cho Sang-Bong
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1648-1651
    • /
    • 2005
  • Fretting contact and fretting fatigue are known to occur in mechanical devices which have fasteners subjected to oscillatory tangential load. Theoretical studies on fretting contact have been focussed on simple geometries, such as cylindrical contact problem. Recently, the contact problem of a flat rounded punch has been solved theoretically. The purpose of this paper is to show that the results of finite element analysis for the fretting contact problem are nearly consistent with the theoretical solutions.

  • PDF

Non-Linear FEM Analysis Study of the Flexural Behavior of the RC Beams Strengthened by CFRP plate (CFRP 플레이트로 휨보강한 보의 거동에 대한 비선형 FEM 해석)

  • Koh, Byung-Soon;Yang, Dong-Suk;Park, Sun-Kyu;You, Young-Chan;Park, Young-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.536-539
    • /
    • 2004
  • This paper focues on the flexural behavior of RC beams externally reinforced using Carbon Fiber Reinforced Plastics plates. (CFRP) A non-linear finite element (FE) analysis is proposed in order to complete the experimental analysis of the flexural behaviour of the beams. This paper is a part of a complete program aiming to set up design formulate to predict the strength of CFRP strengthende beams, particularly when premature failure through plates-end shear or concrete cover delamination occurs. An elasto-plastic behaviour is assumed for reinforced concrete and interface elements are used to model the bond and slip.

  • PDF

A Study of Deformation and Orientation Dependent Behavior in Single Crystals

  • Yang Chulho
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.802-810
    • /
    • 2005
  • Deformations of single crystals were studied using finite element analysis to investigate the localized modes and the orientation dependence of plastic deformation observed in single crystals. Investigation of mechanical properties of single crystals is closely related with the understanding of deformation processes in single crystals. Localized bands such as shear and kink were studied and the material and geometric characteristics that influence the formation of such localized bands were investigated. Orientation dependence of material behavior in NiAl single crystals was studied by rotating slip directions from 'hard' orientation. The maximum nominal compressed stress in NiAl single crystals was widely ranged depending on the misalignment from 'hard' orientation. As the compression axis was set closer to 'hard' orientation, the maximum nominal compressed stress was rapidly increased and made <100> slips difficult to activate. Therefore, non-<100> slips will be activated instead of <100> slips for 'hard' orientation.