DOI QR코드

DOI QR Code

Geometry and Kinematics of the Yeongdeok Fault in the Cretaceous Gyeongsang Basin, SE Korea

한반도 동남부 백악기 경상분지 내 영덕단층의 기하와 운동학적 특성

  • Seo, Kyunghan (Department of Geological Sciences, Pusan National University) ;
  • Ha, Sangmin (Department of Geological Sciences, Pusan National University) ;
  • Lee, Seongjun (Department of Geological Sciences, Pusan National University) ;
  • Kang, Hee-Cheol (Department of Geological Sciences, Pusan National University) ;
  • Son, Moon (Department of Geological Sciences, Pusan National University)
  • 서경한 (부산대학교 지질환경과학과) ;
  • 하상민 (부산대학교 지질환경과학과) ;
  • 이성준 (부산대학교 지질환경과학과) ;
  • 강희철 (부산대학교 지질환경과학과) ;
  • 손문 (부산대학교 지질환경과학과)
  • Received : 2019.09.16
  • Accepted : 2019.09.29
  • Published : 2019.09.30

Abstract

This study aims to identify the geometry and internal structures of the Yeongdeok Fault, a branch fault of the Yangsan Fault, by detailed mapping and to characterize its kinematics by analyzing the attitudes of sedimentary rocks adjacent to the fault, slip data on the fault surfaces, and anisotropy of magnetic susceptibility (AMS) of the fault gouges. The Yeongdeok Fault, which shows a total extension of 40 km on the digital elevation map, cuts the Triassic Yeongdeok Granite and the Cretaceous sedimentary and volcanic rocks with about 8.1 km of dextral strike-slip offset. The NNW- or N-S-striking Yeongdeok Fault runs as a single fault north of Hwacheon-ri, Yeongdeok-eup, but south of Hwacheon-ri it branches into two faults. The western one of these two faults shows a zigzag-shaped extension consisting of a series of NNE- to NE- and NNW-striking segments, while the eastern one is extended south-southeastward and then merged with the Yangsan Fault in Gangu-myeon, Yeongdeok-gun. The Yeongdeok Fault dips eastward with an angle of > $65^{\circ}$ at most outcrops and shows its fault cores and damage zones of 2~15 m and of up to 180 m wide, respectively. The fault cores derived from several different wall rocks, such as granites and sedimentary and volcanic rocks, show different deformation patterns. The fault cores derived from granites consist mainly of fault breccias with gouge zones less than 10 cm thick, in which shear deformation is concentrated. While the fault cores derived from sedimentary rocks consist of gouges and breccia zones, which anastomose and link up each other with greater widths than those derived from granites. The attitudes of sedimentary rocks adjacent to the fault become tilted at a high angle similar to that of the fault. The fault slip data and AMS of the fault gouges indicate two main events of the Yeongdeok Fault, (1) sinistral strike-slip under NW-SE compression and then (2) dextral strike-slip under NE-SW compression, and shows the overwhelming deformation feature recorded by the later dextral strike-slip. Comparing the deformation history and features of the Yeongdeok Fault in the study area with those of the Yangsan Fault of previous studies, it is interpreted that the two faults experienced the same sinistral and dextral strike-slip movements under the late Cretaceous NW-SE compression and the Paleogene NE-SW compression, respectively, despite the slight difference in strike of the two faults.

이번 연구는 영덕군 일원의 상세 지표조사를 통해 양산단층의 가지단층인 영덕단층의 내부 구조와 기하를 파악하고, 주변 퇴적층의 자세, 단층의 운동학적 자료와 단층암의 자기미세구조 분석을 통해 영덕단층의 운동학적 특성을 규명하는데 목적이 있다. 음영기복도에서 총 40 km의 연장을 보이는 영덕단층은 트라이아스기 영덕화강암, 백악기 퇴적암과 화산암을 절단하며 약 8.1 km의 우수향 수평변위를 보인다. 주로 북북서 내지 남-북 방향으로 발달하는 영덕단층은 영덕읍 화천리 이북에서 하나의 단층선으로 달리지만, 화천리 이남에서는 두 조의 단층대로 분기되는 특징을 보인다. 이들 두 조의 단층 중 서편의 것은 북북동 내지 북동 방향과 북북서 방향의 단층분절들이 지그재그 형태로 연결되는 반면, 동편의 것은 북북서 방향의 하나의 단층으로 연장되다가 영덕군 강구면에서 양산단층과 합쳐진다. 영덕단층은 대부분 지점에서 $65^{\circ}$ 이상의 고경사로 동쪽으로 경사하며, 2~15 m 폭의 단층핵과 최대 180 m 폭의 단층손상대를 가진다. 단층핵은 퇴적암류, 화산암류, 화강암 등 여러 모암으로부터 유래된 단층암으로 구성되며, 이들은 모암에 따라 뚜렷한 변형의 차이를 보인다. 화강암에서 유래된 단층핵은 주로 단층각력으로 구성되며, 10 cm 이내 폭의 단층비지대에 전단변형이 집중된다. 반면, 퇴적암에서 유래된 단층핵은 화강암의 것에 비해 두꺼우며 단층비지대와 각력대가 교호하거나 렌즈상의 모암을 단층비지대가 에워싸며 발달한다. 단층대와 인접한 퇴적층의 자세는 주 단층면과 가까워지면 단층면의 자세와 유사하게 고각으로 경동된다. 단층활면 및 전단단열에서 관찰된 운동 자료와 단층암의 대자율이방성 분석결과는 영덕단층이 북서-남동 방향 최대수평응력 하에서 좌수향 주향이동운동을 겪은 이후 북동-남서 방향 최대수평응력 하에서 우수향 주향이동운동을 겪었으며, 우수향 주향이동운동에 의한 변형 특성이 우세하게 기록되어 있다. 이번 연구를 통해 얻어진 영덕단층의 운동사를 기존 양산단층의 운동사와 비교해본 결과, 두 단층의 주향이 다소 차이가 있음에도 불구하고 백악기 말의 북서-남동 방향 최대수평응력과 고제3기의 북동-남서 방향 최대수평응력 하에서 각각 좌수향과 우수향 주향이동의 동일한 감각으로 운동한 것으로 판단된다.

Keywords

References

  1. Astudillo, N., Roperch, P., Townley, B., Arriagada, C., and Maksaev, V., 2008, Importance of small-block rotations in damage zones along transcurrent faults. Evidence from the Chuquicamata open pit, Northern Chile. Tectonophysics, 450, 1-20. https://doi.org/10.1016/j.tecto.2007.12.008
  2. Balsley, J.R. and Buddington, A.F., 1960, Magnetic susceptibility anisotropy and fabric of some Adirondack granites and ortho-gneisses. American Journal of Science, 258-A, 6-20.
  3. Borradaile, G.J., 1988, Magnetic susceptibility, petrofabric and strain-a review. Tectonophysics, 206, 203-218. https://doi.org/10.1016/0040-1951(92)90377-I
  4. Chae, B.-G. and Chang, T. W., 1994, Movement history of Yangsan Fault and its related fractures at Chongha-Yongdok area, Korea. Journal of the Geological Society of Korea, 30, 378-394. (in Korean with English abstract)
  5. Chang, C.-J. and Chang, T.W., 1998, Movement history of the Yangsan Fault based on Paleostress analysis. The Journal of Engineering Geology, 8, 35-49. (in Korean with English abstract) https://doi.org/10.3969/j.issn.1004-9665.2000.01.007
  6. Chang, C.-J., 2002, Structural characteristics and evolution of the Yangsan fault, SE Korea. Ph.D. Thesis, Kyungpook National University, Daegu, 259p. (in Korean with English abstract)
  7. Chang, K.-H., Suzukib, K., Parka, S.-O., Ishida, K. and Uno, K., 2003, Recent advances in the Cretaceous stratigraphy of Korea. Journal of Asian Earth Sciences, 21, 937-948. https://doi.org/10.1016/S1367-9120(02)00142-6
  8. Chang, K.-H., Woo, B.-G., Lee, J.-H., Park, S.-O., and Yao, A., 1990, Cretaceous and Early Cenozoic stratigraphy and history of eastern Kyongsang Basin, S. Korea. Journal of the Geological Society of Korea, 26, 471-487.
  9. Cheon, Y., 2018, Tectonic evolution of the Cretaceous Gyeongsang Basin focused on the Jinju, Daegu, and Uiseong Blocks. Ph.D. Thesis, Pusan National University, Busan, 172p. (in Korean with English abstract)
  10. Cheon, Y., Cho, H., Ha, S., Kang, H.-C., Kim, J.-S., and Son, M., 2019, Tectonically controlled multiple stages of deformation along the Yangsan Fault Zone, SE Korea, since Late Cretaceous. Journal of Asian Sciences, 170, 188-207.
  11. Cheon, Y., Ha, S., Lee, S., Cho, H., and Son, M., 2017, Deformation features and history of the Yangsan Fault Zone in the Eonyang-Gyeongju area, SE Korea. Journal of the Geological Society of Korea, 53, 95-114. (in Korean with English abstract) https://doi.org/10.14770/jgsk.2017.53.1.95
  12. Cheon, Y., Son, M., Song, C.W., Kim, J.-S., and Sohn, Y.K., 2012, Geometry and kinematics of the Ocheon Fault System along the boundary between the Miocene Pohang and Janggi basins, SE Korea, and its tectonic implications. Geosciences Journal, 16, 253-273. https://doi.org/10.1007/s12303-012-0029-0
  13. Cho, H., Kim, J.-S., Son, M., Sohn, Y.K., and Kim, I.-S., 2011, Petrography and 40Ar/39Ar ages of volcanic rocks in the Cretaceous Dadaepo Basin, Busan: Accumulation time and correlation of the Dadaepo Formation. Journal of the Geological Society of Korea, 47, 1-18. (in Korean with English abstract)
  14. Cho, H., Kim, M.-C., Kim, H., and Son, M., 2014, Anisotropy of Magnetic Susceptibility (AMS) of the Quaternary Faults, SE Korea: Application to the Determination of Fault Slip Sense and Paleo-stress Field. Journal of the Petrological Society of Korea, 23, 75-103. (in Korean with English abstract) https://doi.org/10.7854/JPSK.2014.23.2.75
  15. Cho, H., Son, M., and Kim, I.-S., 2007. Anisotropy of magnetic susceptibility (AMS) of the granitic rocks in the Eastern Region of the Yangsan Fault. Economic and Environmental Geology, 40, 171-189. (in Korean with English abstract)
  16. Cho, H., Son, M., Cheon, Y., Sohn, Y.K., Kim, J.-S., and Kang H.-C., 2016, Evolution of the Late Cretaceous Dadepo Basin, SE Korea, in response to oblique subduction of the proto-Pacific (Izanagi/Kula) or Pacific plate. Gondwana Research, 39, 145-164. https://doi.org/10.1016/j.gr.2016.07.004
  17. Choi, H. and Shim, T.-M., 2009, Analysis on the source characteristics of three earthquakes nearby the Gyeongju area of the South Korea in 1999. The Journal of Engineering Geology, 19, 509-515. (in Korean with English abstract)
  18. Choi, H.I., Oh, J.H., Shin, S.C., and Yang, M.Y., 1980, Geology and geochemistry of the Gyeongsang strata in Ulsan area. Korea Institute of Energy and Resources Bulletin, 20, 33p. (in Korean with English abstract)
  19. Choi, J.-H., Kim, Y.-S., and Klinger, Y., 2017, Recent progress in studies on the characteristics of surface rupture associated with large earthquakes. journal of the Geological Society of Korea. 53, 129-157. (in Korean with English abstract) https://doi.org/10.14770/jgsk.2017.53.1.129
  20. Choi, P.Y., Choi, H.I., Hwang, J.H., Kee, W.S., Ko, H.J., Kim, Y.B., Lee, B.J., Song, K.Y., Kim, J.C., and Choi, Y.S., 2002, Explanatory Note of The Mokpo and Yeosu Sheets, 1:250,000. Korea Institute of Geoscience and Mineral Resources, 45p.
  21. Chough, S.K. and Sohn, Y.K., 2010, Tectonic and sedimentary evolution of a Cretaceous continental arc-backarc system in the Korean peninsula: New view. Earth-Science Reviews, 101, 225-249. https://doi.org/10.1016/j.earscirev.2010.05.004
  22. Crone, A.J. and Haller, K.M., 1991. Segmentation and the coseismic behavior of Basin and Range normal faults: examples from east-central Idaho and southwestern Montana, U.S.A. Journal of Structural Geology. 13, 151-164. https://doi.org/10.1016/0191-8141(91)90063-O
  23. Delvaux, D. and Sperner, B., 2003, New aspects of tectonic stress inversion with reference to the TENSOR program. In: New Insights into Structural Interpretation and Modelling (Nieuwland, D. A. Ed.). Geological Society, London, Special Publications, 212, 75-100.
  24. Delvaux, D., Moeys, R., Stapel, G., Petit, C., Levi, K., Miroshnichenko, A., Ruzhich, V., and San'kov, V., 1997, Paleostress reconstructions and geodynamics of the Baikal region, Central Asia, Part 2. Cenozoic rifting. Tectonophysics, 282, 1-38. https://doi.org/10.1016/S0040-1951(97)00210-2
  25. dePolo, C.M., Clark, D.G., Slemmons, D.B., and Ramelli, A.R., 1991. Historical surface faulting in the Basin and Range province, western North America: implications for fault seg- mentation. Journal of Structural Geology, 13, 123-136. https://doi.org/10.1016/0191-8141(91)90061-M
  26. Faulkner, D.R., Lewis, A.C., and Rutter, E.H., 2003, On the Internal Structure and Mechanics of Large Strike-Slip Fault Zones: Field Observations of the Carboneras Fault in Southeastern Spain. Tectonophysics, 367, 235-251. https://doi.org/10.1016/S0040-1951(03)00134-3
  27. Faulkner, D.R., Mitchell, T.M., Rutter, E.H., and Cembrano, J., 2008, On the Structure and Mechanical Properties of Large Strike-Slip Faults. In: Wibberley, C.A.J., Kurz, W., Imber, J., Holdsworth, R.E. and Collettini, C. (eds) The Internal Structure of Fault Zones: Implications for Mechanical and Fluid-Flow Properties. Geological Society, London, Special Publication, 299, 139-150.
  28. Ha, S., Cheon, Y., Kang, H.-C., Kim, J.-S., Lee, S.-K., and Son, M., 2016, Geometry and kinematics of the subsidiary faults of the Ilgwang fault, SE Korea. Journal of the Geological Society of Korea, 52, 31-50. (in Korean with English abstract) https://doi.org/10.14770/jgsk.2016.52.1.31
  29. Han, K.-H., Kang, J.-H., and Lee, G.-D., 2010, Fault movement history and geological structure of the southern Yangsan Fault in the Eonyang-Duseo area. Proceedings of the Annual Joint Conference, 58p.
  30. Han, K.-H., Lee, G.-D., and Kang, J.-H., 2011, Development of the fault and geological structure in southern Yangsan Fault, the Eonyang-Duseo area. Proceedings of the Annual Joint Conference, 72-76.
  31. Hatae, N., 1937, Geological Atlas of Korea, Yanghae and Yongdok sheet, 1:50,000. Geological Survey of Korea.
  32. Hong, S.W., Chough, S.K., and Hwang, I.G., 1998, Provenance of coarse-grained detritus in fan-delta systems, Miocene Pohang basin, SE Korea: implications for boundary fault movements. Geosciences Journal, 2, 46-58. https://doi.org/10.1007/BF02910203
  33. Hrouda, F., 1982, Magnetic anisotropy of rocks and its application in geology and geophysics. Geophysical Surveys, 5, 37-82. https://doi.org/10.1007/BF01450244
  34. Hwang, B.-H., Ernst, W.G., McWilliams, M., and Yang, K., 2008a, Geometric model of conjugate faulting in the Gyeongsang Basin, southeast Korea. Tectonics, 27, TC6015. https://doi.org/10.1029/2008TC002343
  35. Hwang, B.-H., Lee, J.D., and Yang, K., 2004. Petrological study of the granitic rocks around the Yangsan fault: Lateral displacement of the Yangsan fault. Journal of the Geological Society of Korea 40, 161-178. (in Korean with English abstract)
  36. Hwang, B.-H., Lee, J.D., Yang, K., and McWilliams, M., 2007a, Cenozoic strike-slip displacement along the Yangsan fault, southeast Korean Peninsula. International Geology Review, 49, 768-775. https://doi.org/10.2747/0020-6814.49.8.768
  37. Hwang, B.-H., McWilliams, M., Son, M., and Yang, K., 2007b, Tectonic implication of A-type granites across the Yangsan fault, Gigye and Gyeongju areas, southeast Korean Peninsula. International Geology Review, 49, 1094-1102. https://doi.org/10.2747/0020-6814.49.12.1094
  38. Hwang, B.-H., Son, M., Kim, J.-S., Yang, K., and Kim, J.-S., 2012, Cenozoic wrench tectonics and oroclinal bending in SE Korea. International Geology Review, 54, 642-653. https://doi.org/10.1080/00206814.2011.562389
  39. Hwang, B.-H., Son, M., Yang, K., Yoon, J., and Ernst, W.G., 2008b, Tectonic evolution of the Gyeongsang Basin, southeastern Korea from 140 Ma to the present, based on a strike-slip and block-rotation tectonic model. International Geology Review, 50, 343-363. https://doi.org/10.2747/0020-6814.50.4.343
  40. Hwang, J.H., Kim, D.H., Cho, D.R., and Song, K.Y., 1996, Explanatory Note of The Andong Sheet, 1:250,000. Korea Institute of Geoscience and Mineral Resources, 67p.
  41. Hwang, S.K. and Woo, B.G., 2009, Role of the Cheongryangsan Conglomerate and the Osipbong Basalt in Classifying Stratigraphy of the Hayang Group, Yeongyang Subbasin. Journal of Petrological Society of Korea, 18, 181-194. (in Korean with English abstract)
  42. Jelinek, V., 1981, Characterization of the magnetic fabric of rocks. Tectonophysics, 79, 63-67. https://doi.org/10.1016/0040-1951(81)90110-4
  43. Jeon, Y.M. and Sohn, Y.K., 2008. Characteristics, emplacement processes, and stratigraphic implications of the basalts intercalated in the Hayang Group, Cretaceous Gyeongsang Basin, SE Korea. Journal of the Geological Society of Korea, 44, 707-727. (in Korean with English abstract)
  44. Jeong, J.O., Jeon, Y.M., and Sohn, Y.K., 2005, Petrography and modal compositional variations of the Cretaceous Kusandong Tuff, Korea. Journal of the Geological Society of Korea 41, 73-90. (in Korean with English abstract)
  45. Kang, H.-C. and Paik, I.S., 2013, Review on the geological ages of the formations in the Gyeongsang Basin, Korea. Journal of the Geological Society of Korea, 49, 17-29. (in Korean with English abstract)
  46. Kang, H.-C., Cheon, Y., Ha, S.M., Seo, K., Shin, H.C., and Son, M. 2018, Geology and U-Pb age in the eastern part of Yeongdeok-gun, Gyeongsangbuk-do, Korea. Journal of the Petrological Society of Korea, 27, 153-171. (in Korean with English abstract) https://doi.org/10.7854/JPSK.2018.27.3.153
  47. Kang, J.-H. and Ryoo, C.-R., 2009, The movement history of the southern part of the Yangsan Fault Zone interpreted from the geometric and kinematic characteristics of the Sinheung Fault, Eonyang, Gyeongsang Basin, Korea. Journal of the Petrological Society of Korea, 18, 19-30. (in Korean with English abstract)
  48. Kim, C.-M., Han, R., Jeong, G.Y., Jeong, J.O., and Son, M., 2016, Internal structure and materials of the Yangsan fault, Bogyeongsa area, Pohang, South Korea. Geosciences Journal, 20, 759-773. https://doi.org/10.1007/s12303-016-0019-8
  49. Kim, I.-S., 1992, Origin and tectonic evolution of the East Sea (Sea of Japan) and the Yangsan fault system: a new synthetic interpretation. Journal of the Geological Society of Korea, 28, 84-109. (in Korean with English abstract)
  50. Kim, J.-S., Lee, J.D., and Yun, S.-H., 1998, Magma mingling evidence of the granitic rocks in the Geoje-island: Petrographical characteristics. Journal of the Geological Society of Korea, 34, 105-121. (in Korean with English abstract)
  51. Kim, J.-S., Son, M., Kim, J.-S., and Kim, J., 2005, 40Ar/39Ar ages of the Tertiary dike swarm and volcanic rocks, SE Korea. The Journal of the Petrological Society of Korea, 14, 93-107. (in Korean with English abstract)
  52. Kim, Y.-S. and Jin, K., 2006, Estimated earthquake magnitude from the Yugye Fault displacement on a trench section in Pohang, SE Korea. Journal of the Geological Society of Korea, 42, 79-94. (in Korean with English abstract)
  53. Kyung, J.B. and Chang, T.W., 2001, The Lastest Fault Movement on the Northern Yangsan Fault Zone around the Yugye-Ri Area, Southeast Korea. Journal of the Geological Society of Korea, 37, 563-577. (in Korean with English abstract)
  54. Kyung, J.B., Lee, K., and Okada, A., 1999, A Paleoseismological study of the Yangsan Fault - analysis of deformed topography and trench survey. Journal of the Korean Geophysical Society, 2, 155-168. (in Korean with English abstract)
  55. Lee, H.-K. and Kim, H.S., 2005, Comparison of structural features of the fault zone developed at different protoliths: crystalline rocks and mudrocks. Journal of Structural Geology, 27, 2099-2112. https://doi.org/10.1016/j.jsg.2005.06.012
  56. Lee, K. and Jin, Y.G., 1991, Segmentation of the Yangsan fault system: Geophysical studies on major faults in the Kyeongsang Basin. Journal of the Geological Society of Korea, 27, 434-449.
  57. Reedman, A.J., and Um, S.H., 1975, The geology of Korea. Geological and Mining Institute of Korea, 139p.
  58. Rochette, P., Jackson, M., and Aubourg, C., 1992, Rock magnetism and the interpretation of anisotropy of magnetic susceptibility. Review of Geophysics, 30, 209-226. https://doi.org/10.1029/92RG00733
  59. Sohn, Y.K. and Son, M., 2004, Synrift stratigrahpic geometry in a transfer zone coarse-grained delta complex, Miocene Pohang basin, SE Korea. Sedimentology, 51, 1387-1408. https://doi.org/10.1111/j.1365-3091.2004.00679.x
  60. Solum, J.G. and van der Pluijm, B.A., 2009, Quantification of fabrics in clay gouge from the Carboneras fault, Spain and implications for fault behaviour. Tectonophysics, 475, 554-562. https://doi.org/10.1016/j.tecto.2009.07.006
  61. Son, M., 1998, Formation and evolution of the Tertiary Miocene basins in southeastern Korea: Structural and paleomagnetic approaches. Ph.D. Thesis, Pusan National University, Busan, 233p. (in Korean with English abstract)
  62. Son, M., Kim, I.-S., and Sohn, Y.K., 2005, Evolution of the Miocene Waup basin, SE Korea, in response to dextral shear along the southwestern margin of the East Sea (Sea of Japan). Journal of Asian Earth Sciences, 25, 529-544. https://doi.org/10.1016/j.jseaes.2004.06.003
  63. Son, M., Kim, J.-S., Hwang, B.-H., Lee, I.-H., Kim, J., Song, C.W., and Kim, I.-S., 2007. Paleogene dyke swarms in the eastern Geoje Island, Korea: their absolute ages and tectonic implications. Journal of the Petrological Society of Korea, 16, 82-99. (in Korean with English abstract)
  64. Son, M., Kim, J.S., Hwang, B.-H., Ryoo, C.-R., Ock, S.-S., Hamm, S.-Y., and Kim, I.-S., 2003, Geology and fracture distribution in the vicinities of the Cheonseong and Jeongjok mountains. Journal of Engineering Geology, 13, 107-127. (in Korean with English abstract) https://doi.org/10.3969/j.issn.1004-9665.2005.01.018
  65. Son, M., Seo, H.J., and Kim, I.-S., 2000, Geological structures and evolution of the Miocene Eoil basin, southeastern Korea. Geosciences Journal, 4, 73-88. https://doi.org/10.1007/BF02910128
  66. Son, M., Song, C.W., Kim, M.-C., Cheon, Y., Cho, H., and Sohn, Y.K., 2015, Miocene tectonic evolution of the basins and fault systems, SE Korea: dextral, simple shear during the East Sea (Sea of Japan) opening. Journal of the Geological Society, 172, 664-680. https://doi.org/10.1144/jgs2014-079
  67. Son, M., Song, C.W., Kim, M.-C., Cheon, Y., Jung, S., Cho, H., Kim, H.-G., Kim, J.S., and Sohn, Y.K., 2013, Miocene crustal deformation, basin development, and tectonic implication in the southeastern Korean Peninsula. Journal of the Geological Society of Korea. 49, 93-118. (in Korean with English abstract)
  68. Song, C.W., 2015, Study on the evolution of the Miocene Pohang Basin Based on its structural characteristics. Ph.D. Thesis, Pusan National University, Busan, 146p. (in Korean with English abstract)
  69. Stacey, F.D., Joplin, G., and Lindsay, J., 1960, Magnetic anisotropy and fabric of some foliated rocks from S.E. Australia. Geofisica Pura Applicata, 47, 30-40. https://doi.org/10.1007/BF01992481
  70. Um, S.H., Choi, H.I., Son, J.D., Oh, J.H., Shin, S.C., and Yun, H.S., 1983, Geology and geochemical study of Gyeongsang super group in the Gyeongsang Basin. Korea Institute of Geology, Mining, and Minerals (KIGAM), Research Report, no. 36, 118p. (in Korean with English abstract)
  71. Yang, J.-S. and Lee, H.-K., 2014, Quaternary fault activity of the Yangsan Fault Zone in the Samnam-myeon, Uljugun, Ulsan, Korea. Economic and Environmental Geology, 47, 17-27. (in Korean with English abstract) https://doi.org/10.9719/EEG.2014.47.1.17