• 제목/요약/키워드: shear ring

검색결과 132건 처리시간 0.032초

Shear wave velocity of fiber reinforced cemented Toyoura silty sand

  • Safdar, Muhammad;Newson, Tim;Schmidt, Colin;Sato, Kenichi;Fujikawa, Takuro;Shah, Faheem
    • Geomechanics and Engineering
    • /
    • 제25권3호
    • /
    • pp.207-219
    • /
    • 2021
  • Several additives are used to enhance the geotechnical properties (e.g., shear wave velocity, shear modulus) of soils to provide sustainable, economical and eco-friendly solutions in geotechnical and geo-environmental engineering. In this study, piezoelectric ring actuators are used to measure the shear wave velocity of unreinforced, fiber, cemented, and fiber reinforced cemented Toyoura sand. One dimensional oedometer tests are performed on medium dense specimens of Toyoura sand-cement-fiber-silica flour mixtures with different percentages of silica flour (0-42%), fiber and cement (e.g., 0-3%) additives. The experimental results indicate that behavior of the mixtures is significantly affected by the concentration of silica flour, fiber and cement additives. Results show that with the addition of 1-3% of PVA fibers, the shear wave velocity increases by only 1-3%. However, the addition of 1-4% of cement increases the shear wave velocity by 8-35%. 10.5-21% increase of silica flour reduces the shear wave velocity by 2-5% but adding 28-42% silica flour significantly reduces the shear wave velocity by 12-31%. In addition, the combined effect of cement and fibers was also found and with only 2% cement and 1% fiber, the shear wave velocity increase was found to be approximately 24% and with only 3% cement and 3% fibers this increased to 35%. The results from this study for the normalized shear modulus and normalized mean effective stress agree well with previous findings on pure Toyoura sand, Toyoura silty sand, fiber reinforced, fiber reinforced cemented Toyoura sand. Any variations are likely due to the difference in stress history (i.e., isotropic versus anisotropic consolidation) and the measurement method. In addition, these small discrepancies could be attributed to several other factors. The potential factors include the difference in specimen sizes, test devices, methods of analysis for the measurement of arrival time, the use of an appropriate Ko to convert the vertical stresses into mean effective stress, and sample preparation techniques. Lastly, it was investigated that there is a robust inverse relationship between α factor and 𝞫0 exponent. It was found that less compressible soils exhibit higher 𝜶 factors and lower 𝞫0 exponents.

링형 합성 전단연결재를 적용한 철근 콘크리트 충전 PHC말뚝의 유한요소해석 (Finite Element Analysis on Reinforced Concrete Filled PHC Pile with Ring Type Composite Shear Connectors)

  • 김정회;이두성;박영식;민창식
    • 콘크리트학회논문집
    • /
    • 제29권3호
    • /
    • pp.249-257
    • /
    • 2017
  • 본 연구는 PHC말뚝의 단점을 보강한 기능성 말뚝을 개발함으로서 보다 경제적이고 합리적인 말뚝의 현장 적용에 기여하고자 하였다. 본 연구를 통해 개발된 CFP말뚝은 링형 합성 전단연결재를 배치하고 PHC말뚝 중공부에 콘크리트를 속채움함으로써 말뚝 단면 확대를 통한 압축응력을 증대시키고, PHC말뚝 내 보강철근(H13-8ea)과 말뚝 중공부의 보강철근(H19-8ea)을 배치함으로서 전단과 휨 성능을 향상시켰다. 또한, 속채움 콘크리트와 PHC말뚝의 합성거동을 위해 링형 합성 전단연결재를 배치함과 동시에 PHC말뚝 내 보강철근(H13-8ea)을 연결재 내부에 배치함으로서 두 부재의 유격내에 콘크리트로 메우는 슬리브형 기계적 이음방법을 도입하였다. 링형 합성 전단연결재의 배치 간격 도출과 말뚝의 전단 및 휨 성능을 검증하고자 범용프로그램을 이용한 콘크리트 구조물의 비선형재료 모델로 유한요소해석을 수행하였다. 링형 합성 전단연결재를 배치하여 제작되는 CFP말뚝의 다양한 해석을 통해서 PHC 말뚝의 전단 및 휨 강성을 효과적으로 증대시킬 수 있음이 입증되어 건설현장에 유용하게 활용될 수 있을 것으로 사료된다.

Finite Element Analysis of Reinforced Concrete Shear Walls with a Crack under Cyclic Loading

  • Kato, S.;Ohya, M.;Shimaoka, S.;Takayama, M.
    • Computational Structural Engineering : An International Journal
    • /
    • 제1권2호
    • /
    • pp.107-116
    • /
    • 2001
  • The present paper investigates the nonlinear behavior of reinforced concrete shear walls with a crank based on a finite element analysis. The loading type is a horizontal cyclic one such as earthquake loads. Experiments of the shear walls with and without cranks, performed previously to see flow the behavior changes depending on the crank, are compared with the results obtained from the finite element analysis. The finite element analysis is based on an isoparametric degenerated shell formulation. The nonlinear constitutive equations fur concrete are modeled adopting the formulation based on a concept of Ring Typed-Lattice Model. The experiments indicate that the shear walls with a crank have low stiffness and relatively low carrying capacity compared with an ordinary plane shear wall without cranks and that they are more ductile, and the tendency is a1so confirmed based on the finite element analysis. Moreover, a good agreement between the experiments and analyses is obtained, accordingly, it is confined that the present numerical analysis scheme based on the Lattice Model is a powerful one to evaluate the behavior of reinforced concrete shear walls with cranks and without cranks.

  • PDF

로켓 노즐 내열부품용 탄소-페놀 복합재 적층링의 열기계적 거동에 대한 3차원 유한요소 해석 (3-D finite Element Analysis for Thermo-Mechanical Behavior of Laminated Carbon-Phenolic Composite Ring for Rocket Nozzle Insulator)

  • 이선표
    • 한국추진공학회지
    • /
    • 제10권4호
    • /
    • pp.47-53
    • /
    • 2006
  • 본 논문에서는 탄소-페놀 복합재로 제조된 로켓 노즐 내열부품의 고온에서의 거동을 3차원 축대칭 유한요소 모델을 사용하여 해석하였다. 실제 작동 조건을 사용하여 카울 영역의 적층링을 해석한 결과 층각도, 축방향 치수, 경계조건은 적층링 내부의 응력 분포에 큰 영향을 주는 것으로 확인되었다. 특히 링과 링 사이의 접합부분에서 모서리 탈락 현상의 전조 현상인 층간분리가 발생한다. 분리현상 이후에는 층각도 방향 전단응력과 축방향 압축응력에 의해 탈락 현상이 발생하는 것으로 판단된다.

PTT/Wool/Modal Air vortex사 편성물의 의류 착용성능과 쾌적물성 (Wearing Performance and Comfort Property of PTT/Wool/Modal Air Vortex Yarn Knitted Fabrics)

  • 김현아
    • 한국의류학회지
    • /
    • 제40권2호
    • /
    • pp.305-314
    • /
    • 2016
  • This paper investigated the applicable possibility of PTT and wool staple fibers to the air vortex system as high quality yarns for a high emotional and comfort garment. It was found that the tactile hand of vortex yarn knitted fabrics was harsher than ring and compact yarns knitted fabrics. It was observed that formability and sewability of air vortex yarn knitted fabrics seemed worse than ring and compact yarns due to low tensile and compressional resilience and high bending and shear hysteresis of air vortex yarn knitted fabrics. It revealed that wicking and drying rates of air vortex yarn knitted fabric were better than ring and compact yarns; in addition, the heat keepability of vortex yarn knitted fabric was higher than ring and compact yarns due to low thermal conductivity and max heat flow rate ($Q_{max}$). Any difference of thermal shrinkage between air vortex and ring yarn knitted fabrics was not shown, but pilling characteristic of air vortex yarn knitted fabric was superior. However, it was shown that wicking, drying, thermal property and pilling characteristics of air vortex yarn knitted fabric were superior due to air vortex yarn structure with parallel fibers in the core part and periodical and fasciated twists in the sheath part of the yarns.

PTT/Tencel/Cotton 친환경 MVS 혼방사 편성물의 물성에 관한 연구 (II) (Wearing Performance of Garment for Emotional Knitted Fabrics Made of PTT/Tencel/Cotton MVS Blended Yarns (II))

  • 김현아
    • 한국의류산업학회지
    • /
    • 제17권6호
    • /
    • pp.1020-1029
    • /
    • 2015
  • This paper investigated the wearing performance of knitted fabrics made of air vortex yarns using PTT/tencel/cotton fibres in comparison with ring and compact yarns for emotional garment. Wicking property of knitted fabric made of MVS yarns was worse than those by ring and compact yarns, however, drying property of knitted fabric made of MVS yarns was better than those by ring and compact yarns, which was explained as more water vapor transport due to larger openness between fibres in the MVS yarns than those in the ring and compact yarns. Thermal conductivity of knitted fabric made of MVS was lower than those of ring and compact yarns and maximum heat flow(Qmax) at the transient state of MVS knitted fabric was lower than those of ring and compact yarns, which may be attributed to MVS yarn structure that has parallel fibres in the core part of the yarn and fasciated fibre bundles on the sheath part with roughness on the yarn surface. However, pilling of MVS knitted fabric was better than those by ring and compact yarns, which was caused by less and shorter hairy fibres protruded from MVS yarn surface than those of ring and compact yarns. It was observed that tactile hand of MVS yarn knitted fabrics was stiffer than those of ring and compact yarns knitted fabrics. It was explained by low extensibility and compressibility and high bending and shear rigidities of the MVS yarn knitted fabrics, which resulted in bad wearing performance of MVS knitted fabric.

지역난방 열배관 강화를 위한 실증시험 연구 (Experimental Study for the Reinforcement of District Heating Pipe)

  • 김재민;김주용;조종두
    • 대한기계학회논문집A
    • /
    • 제40권3호
    • /
    • pp.245-252
    • /
    • 2016
  • 본 논문은 벤드(bend)부의 노후 문제를 경감시키기 위한 대안으로 폼패드를 없앤 이중보온관의 형상 설계를 제안하였다. 전 관경에 대해 유한요소해석을 수행하였으며, 이를 토대로 전단제어링 형상을 결정하였다. 제안된 전단제어링 사양 강화이형관에 대한 현장 시공 시험은 진행하였으며, 온도와 응력 데이터를 취득 및 분석하였다. 강화이형관의 제작과 현장 시범시공을 통하여 강화이형관이 폼패드를 시공하지 않으면서도 강관의 열응력이 허용치 기준내에 있음을 확인하였다. 특히 보온재의 전단강도가 강화되어 폼패드를 적용한 기존 벤드보다 낮은 최대 전단응력이 발생함을 확인함으로써, 강화이형관 적용에 따른 구조 안전성 향상 효과를 확인하였다.

보강재로 보강된 개방 원뿔형 쉘의 해석 (Analysis of Open Conical Shells with Stiffeners)

  • 박원태;최재진;손병직
    • 한국안전학회지
    • /
    • 제19권4호
    • /
    • pp.101-108
    • /
    • 2004
  • In this study, open conical shells with ring and stringers are analyzed A versatile 4-node shell element which is useful for the analysis of conical shell structures is used and 3-D beam element is used for stiffeners. An improved flat shell element is established by the combined use of the addition of non-conforming displacement modes and the substitute shear strain fields. The proposed element has six degrees of freedom per node and permits an easy connection to other types(beam element) of finite elements. Optimum location and optimum section properties of ring and stinger are obtained. It is shown thai the thickness of conical shell can be reduced about $20\~50\%$ by appropriate location of stiffeners.

Analysis of the Dispersion Relation of Elastic Waves Propagating on Vibrating Cylindrical Shells

  • Kil, Hyun-Gwon
    • The Journal of the Acoustical Society of Korea
    • /
    • 제20권4E호
    • /
    • pp.45-51
    • /
    • 2001
  • This paper examines the dispersion relation governing the wave propagation on cylindrical shells. The assumption of thin shells allows the dispersion relation to be separated into three relations related to the propagation of flexural waves and two types of membrane waves. Those relations are used to identify the characteristics of the wave number curves. The dispersion relation provides two and three closed wave number curves below and above the ring frequency. Above the ring frequency three wave number curves are clearly identified to be those of flexural, shear and longitudinal waves, respectively. Below the ring frequency, the characteristics of two wave number curves are identified with dependence of the direction of wave propagation.

  • PDF

고압 이단 링블로워의 삼차원 유동해석 및 성능평가 (FLOW ANALYSIS AND PERFORMANCE EVALUATION OF HIGH PRESSURE DOUBLE STAGE RING BLOWER)

  • 이기돈;김광용
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 추계 학술대회논문집
    • /
    • pp.45-48
    • /
    • 2007
  • In the present work, flow analysis has been performed for side channel type double stage ring blower by solving three-dimensional Reynolds-averaged Navier-Stokes equation. Shear stress transport model is used as turbulent closure. The commercial CFD code CFX 11.0 is used for the calculations. Each of two stage is calculated separately and the second stage inlet flow is same as the first stage outlet flow so that consecutive calculation is possible. Velocity and pressure fields have been analyzed at the midplane between blades. The numerical results are validated with experimental data for head coefficients at different flow coefficients.

  • PDF