DOI QR코드

DOI QR Code

Finite Element Analysis on Reinforced Concrete Filled PHC Pile with Ring Type Composite Shear Connectors

링형 합성 전단연결재를 적용한 철근 콘크리트 충전 PHC말뚝의 유한요소해석

  • 김정회 (아이에스동서(주) 기술연구소) ;
  • 이두성 ((주)홍지 기술연구소) ;
  • 박영식 (아이에스동서(주) 기술연구소) ;
  • 민창식 (동국대학교 건설환경공학과)
  • Received : 2016.12.06
  • Accepted : 2017.04.25
  • Published : 2017.06.30

Abstract

The purpose of this study was to contribute to the field application cost effectively and reasonably by developing the functional piles that make up for the defects of PHC piles. CFP (Concrete Filled Pretensioned Spun High Strength Concrete Pile with Ring type Composite shear connectors) piles developed in this study increases the compressive stress through enlarged cross section by rearranging composite shear connectors and filling the hollow part of PHC pile with concrete. And it improved shear and bending performance placing the rebar (H13-8ea) within the PHC pile and the hollow part of PHC pile of rebar (H19-8ea). In addition, the composite shear connectors were placed for the composite behavior between PHC pile and filled concrete. Placing Rebars (H13-8ea) of PHC pile into composite shear connector holes are sleeve-type mechanical coupling method that filling the concrete to the gap of the two members. Nonlinear finite element analyzes were performed to verify the performance of shear and bending moments and it deduced the spacing of the composite shear connectors. Through a various interpretation of CFP piles, it's proved that the CFP pile can increase the shear and bending stiffness of the PHC pile effectively. Therefore, this can be utilized usefully on the construction sites.

본 연구는 PHC말뚝의 단점을 보강한 기능성 말뚝을 개발함으로서 보다 경제적이고 합리적인 말뚝의 현장 적용에 기여하고자 하였다. 본 연구를 통해 개발된 CFP말뚝은 링형 합성 전단연결재를 배치하고 PHC말뚝 중공부에 콘크리트를 속채움함으로써 말뚝 단면 확대를 통한 압축응력을 증대시키고, PHC말뚝 내 보강철근(H13-8ea)과 말뚝 중공부의 보강철근(H19-8ea)을 배치함으로서 전단과 휨 성능을 향상시켰다. 또한, 속채움 콘크리트와 PHC말뚝의 합성거동을 위해 링형 합성 전단연결재를 배치함과 동시에 PHC말뚝 내 보강철근(H13-8ea)을 연결재 내부에 배치함으로서 두 부재의 유격내에 콘크리트로 메우는 슬리브형 기계적 이음방법을 도입하였다. 링형 합성 전단연결재의 배치 간격 도출과 말뚝의 전단 및 휨 성능을 검증하고자 범용프로그램을 이용한 콘크리트 구조물의 비선형재료 모델로 유한요소해석을 수행하였다. 링형 합성 전단연결재를 배치하여 제작되는 CFP말뚝의 다양한 해석을 통해서 PHC 말뚝의 전단 및 휨 강성을 효과적으로 증대시킬 수 있음이 입증되어 건설현장에 유용하게 활용될 수 있을 것으로 사료된다.

Keywords

References

  1. Chun, Y. S., Park, J. B., and Sim, Y. J., "Mechanical Properties of PHC Pile Head Connection with Foundation Slab and Field Application", Magazine of the Korea Concrete Institute, Vol. 22, No. 5, 2010, pp. 71-77. https://doi.org/10.22636/MKCI.2010.22.5.71
  2. Bang, J. W., Hyun, J. H., Lee, B. Y., Lee, S. S., and Kim, Y. Y., "Flexural Strength of PHC Pile Reinforced with Infilled Concrete Transverse and Longitudinal Reinforcements", Journal of the Korea Concrete Institute, Vol. 25, No. 1, 2013, pp. 91-98. https://doi.org/10.4334/JKCI.2013.25.1.091
  3. Park, T. K., Lee, J. C., and Lee, C. S., "Problem and Improvement Measure of PHC Pile Construction", In Proceedings of the Korean Institute of Construction Engineering and Management, Korean Institute of Construction Engineering and Management, 2008, pp. 344-348.
  4. Kim, I. T., Kim, S. R., and Kim, M. M., "A Study on the Applicability of High-Performance Piles on Railway Bridges", In proceedings of 2012 The Korean Society for Railway, The Korean Society for Railway, Gyeongju, Korea, 2012. pp. 165-171.
  5. Kishida, S., Horii, M., Kuwabara, F., and Hayashi, S., "Experimental Study on Shear Strength of the PHC Pile with Large Diameter", 12th World Conference on Earthquake Engineering, New Zealand Society for Earthquake Engineering, Auckland, New Zealand, 2000, pp. 1-8.
  6. Seiji, K., Akira, W., Katsumi, K., Shiro, M., and Kuninari, U., "The effectiveness of concrete fill in the hollow part of PHC piles: Study of the improvement in the bearing capacity and deformability of the prestressed high strength concrete (PHC) pile", Part 2. J. Struct. Constr. Eng., No. 390, 1988, pp. 134-141
  7. M. Horrii., S. Hayashi., and S. Kokusho., "Improve ment of plastic deformability of high-strength prestressed concrete piles under axial and lateral forces" Tenth World Conference on Earthquake Engineering, Rotterdam, Netherlands, 1992, pp. 1945-1950.
  8. KS F 4306, Pretensioned Spun High Strength Concrete Piles, Korean Agency for Technology and Standards, Seoul, Korea, 2004, pp. 1-55.
  9. Kookmin University, Development Study of High Durable New Material Marin Piles, Ministry of Maritime Affairs and Fisheries, Seoul, Korea, 2002.