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Abstract

This paper examines the dispersion relation governing the wave propagation on cylindrical shells. The assumption of 

thin shells allows the dispersion relation to be separated into three relations related to the propagation of flexural waves 
and two types of membrane waves. Those relations are used to identify the characteristics of the wave number curves. 

The dispersion relation provides two and three closed wave number curves below and above the ring frequency. Above 

the ring frequency three wave number curves are clearly identified to be those of flexural, shear and longitudinal waves, 
respectively. Below the ring frequency, the characteristics of two wave number curves are identified with dependence 

of the direction of wave propagation.
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I. Introduction

Vibration of cylindrical shells can be regarded as a 
superposition of disturbances due to elastic waves 

propagating on the shells. The analysis from a wave 
viewpoint can give physical insight about how disturbance 
propagates on vibrating shells. Pierce[l] introduced the 

basic idea that waves propagating on a point-excited 
cylindrical shell behave like waves propagating in a two- 
dimensional unbounded homogeneous anisotropic medium 
with excitation forces that are periodic in the transverse 
direction. Pierce and Kil [2] used the idea to analyze the 
wave propagation on the cylindrical shell. Their numerical 
results yielded the implication that major features of the 
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thin plate model's prediction could h이d relatively well, 
down to frequencies as low as twice the ring frequency 

of the cylindrical shell. Means, Kouzoupis and Pierce[3] 
examined the wave propagation on a cylindrical shell 

well below the ring frequency including a fluid-loading. 

But their analysis was performed mainly in a low 
frequency limit. The present paper examined the 
dispersion relation which governs wave propagation on 
the cylindrical shells. The assumption of thin shells 
allows the dispersion relation to be separated into three* 
relations related to the propagation of flexural waves and 

two types of membrane waves, Those relations are used 
to identify the characteristics of the wave number curves. 
Above the ring frequency three wave number curves are 
clearly identified to be those of flexural, shear and 
longitudinal waves, respectively. Below the ring frequency, 

the characteristics of two wave number curves are 
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identified with dependence of the direction of wave 
propagation.

II. Formulation

2.1. Shell Dynamic Equation
Consider an infinite thin-walled cylindrical shell with 

nominal radius a and thickness h in Figure 1 (The 

dispersion of waves is independent of presence of the ends 
of the shell). The displacement vector v is described in 
terms of variables u, v and w in the axial (n)‘, 

circumferential (©) and radial ( r) directions. In order to 

describe the displacement field on the shell, the Donneir s 
thin shell dynamic equations [4] are used. However, the 

methodology introduced in this paper, for the most part, 
is independent of the adopted simple shell model.

With the allowance fbr a radial point-force excitation, 

the shell dynamic equations take the fbnns

(/} v = {F) (1)

where (/} is a linear operator that can be found in 

Ref.[5]. {F} denotes the external force vector applied at 

z = 0 on the shell.
The response of the point excited cylindrical shell can 

be regarded as a superposition of propagating disturbances 
due to elastic waves which circum-navigate the cylinder. 
This physical idea allows the response to be taken as a 
spati지 Fourier integral[6]. The axial component of the 

displacement vector, for example, with the suppressed 

time dependence e~1Q}t,

心,N,z〃)= ”岛金 J—8，財短 Z。) e”拼 m我z (2)

where kz is the axial wavenumber, n corresponds to the 

circumferential wave number = n/a. The Fourier 

transform Un can be regarded as the complex amplitude 

of the axial displacement component, which is associated 

with waves propagating in the direction of the related 

wave number vector k as

k =知:瓦 + 么 sin。々 髙 十 ^cos 凱 2； (3)

where 6k = tan ~\n/ kza). / and 五 correspond to the 

unit vector in the corresponding directions.
The algebraic equations governing the Fourier transforms 

Un, Vn and Wn are obtained from Eq.(l). Those can be 

expressed in matrix form as

Un\ I 0
[L] 시= 0 (4)
E 丿[Qn]

where elements of the matrix [L] take the forms

Ln = -~kza2-「능브 w2, Li2 = - 丄专브 시"으 (=L21)

乙13 = iykza,(=乙31),乙22 =罗 _ ' 2 '感— W2, 

乙23 =汕(=乙32)，乙33 = 1 + £(感"2 + /)，— 2?2 (5) 

Figure 1. Coordinate system of a cylindrical shell.
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Here e=&2/(12/) and Qn corresponds to the Fourier 

transform of the radial point force F= F^8{z)

In Eq.(5) the dimensionless frequency is used as Q= a)la)r 

vdiere a)r= (l/«)[ E/ p(l 一 p2)]1/2 denotes the ring frequency 

of the cylinder. Here E, p and v correspond to Young's 

modulus, density and Poisson* s ratio, respectively.
For a nontrivial solution of Eq.(4), the determinant of 

the coefficient matrix must be zero as

det([L]) = D(ntkzt w) = 0 (6)

that takes the form of a fourth-order equation in 履. 

Eq.(6) is called the dispersion relation governing the wave 

propagation on the shells.

2.2. 미spersion (Elation
Naturally occurring plane wave solutions of shell 

dynamic equations are governed by the dispersion relation 

D{n,kzt w) = 0 in Eq.(6). Depending on the nature of the 

roots of the dispersion relation, the s이ution describes 
propagating or exponentially decaying waves. The 

propagating waves include flexural, longitudinal and shear 

waves.
The thickness of the shell is regarded small compared 

with the radius of the shell like hl a 1/20 (or e = 

/z2/(12(22)^2.1x10 -4) which is generally accepted for 

thin shell dynamics[7]. Such a small e allows the function 

D to be factored to

D ~ DR敬 Dgm — ^flex D meml D m^m2 (7)

where

Dflex — £厲一疔 + (1 —/)海 W (8)

n —(1 二以 F) ]-} fQAmem ~丄丿 meml 丄丿 mem2

Here,

■D meml =—履)；D 海沥=(丑2 —麻) (1。)

where

；h2 = 上笋 (11)

丿2 =(1— 刃[(1-孩)COS 纽约，

Z4= _농흐0 +능也卩 + 2(1 +切 CO或이疔 
Li 厶

+ (1 矿")_[] _2(3 一 P)COS 您+4(1— U)COS

+ " 4 " ) [1 +4(1 + ^)COS 2^—4(1 — cos 4。左]妇4

Here k0 = ka represents the dimensionless wavenumber. 

The factor Dfiex gives the dispersion relation of flexural 

waves. The factor 2)海秫 is independent of the parameter e 

(i.e. thickness /?), and Dmem=0 gives the dispersion 

relation of membrane waves. The factor is exactly 

factored to D 算g D 皿点 as shown in Eqs.(9)-(11). This 

factorization is effective in all frequency range. Each of 

Dmeml = 0 and DmenQ = 0 correspond to the dispersion 

relation of the different types of membrane waves.
In the limit of high frequency,々》1, those three factors 

can be approximated by

D腿ae屬一罗 (12)

D meml 서，Q — k0 , — Dlong (13)

D 勒血产 了으夢(疔 一 ' 2 ” 思，= D血快坪 (14)

The three factors, when separately equated to zero, 

correspond to dispersion relations for flexural, longitudinal, 
and shear waves propagating on thin plates, respectively. 
Improved approximations that h이d down to moderate 

values of Q
E
Diong= ^22-^-[sin2^+ vcos2^]2 (15)

Dshear = 罗 一 丄成브 成 一 2(1 — 勿 sin 2缶cos 饥 (16)

When 。為=0, such that the propagation is in the axial 

direction, and Ds Eq.(10) are

meml = (] } 切(疔 '万브 属) (⑺
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D s = 豈《라)- 岛 (18)

at Q lower than 釦 where

0，=［七?&严广 (19)

which corresponds to 22=0.94 with i/= 0.283. But, at Q 
higher than Qm9 those take the opposite forms

= *告그3 - 爲 (20)

生》■(罗 — 丄브麻) (2D

Here, Eqs.(17) and (21), when equated to zero, correspond 

to the dispersion relation of shear waves on plates. 

Therefore, for Q lower than those relations indicate 

th건 and Dmem2> when 印 =0, are associated with

shear and longitudinal waves, respectively, even though 
they are related to longitudinal and shear waves, 

respectively, at Q higher than Qm. In low frequency limit 

(.2« 1), the factor in Eq.(18) is best approximated 

by

D mernZ =(］匕—感 (22)

For the case when the propagation is in the axial direction, 
it indicates that the phase velocity of a longitudinal wave 

in the low frequency limit is {Elp)1/2, which corresponds 

to the so-called “barw아ocity”.
When 0k= ^/2, such that the propagation in the 

circumferential direction, and Z)””成 诅 Eq.(10) 

take the forms

〃51=(疔一1)—廃 (23)

〃次까2= 石£刁 (罗 _ 坪属) (24)

It indicates that and D”s，when 6氏 = 찌2” 

associated to longitudinal and shear waves, respectively.

III. Results

The characteristics of wave propagation on the shell are 

examined by plotting the wave number curve of constant 
frequency, along which the dispersion relation is satisfied 
in wave number space. Figures 2 and 3 show the 

wavenumber c냐rves below and above the ring frequency 

02=1), re동pectively. Those are predicted from the 

dispersion relations such as D 次由=0 ,D ”列成=0 ,刀•彻 

~0 in Eqs.(8)-(11). Those are also compared to the 

wavenumber curves evaluated from the exact dispersion 

relation in Eq.(6). In these computations, e=3.3><10 -5 

(h/a= 1/50) was used. The results show that the 
approximate factorization gives very good approximations 

at the dimensionless frequency below and above the ring 

frequency.
Figures 2(a)-(c) show that the wavenumber curve for 

flexural waves does not form a closed curve at dimensionless 

frequencies below a certain frequency, which is determined 

as Qf= (1 - v2)1/2 (corresponding to 0.96 for 卩=0.283) 

from Eq.(8). Those figures also show that the flexural 

waves propagate in the particular region, which is defined 
as

10』시仇J 시勿一^ (25)

Here, the angle Qf corresponds to 0f= cos -1［宓/( i 一 伏)］ 

determined from Eq.(8).
Figures 2(a)-(c) show that the wave number curve 

represented by D 岫 i = 0 forms two open curves up to 

which approximately resemble parabolas near kz 

axis. When the finite value of e is taken account, these 

curves continue to the curve represented by Z)施=0 at 

dimensionless frequency below 0. The wave number 

curve represented by D 吨加=0 do not exist between Qf 

and Q= 1 as illustrated in Figure 2(d). Above the ring 

frequency, it forms a closed curve which corresponds to 
longitudinal waves as shown in Figures 3(a) and (b). 
However, the wave number curve represented by 
D 次= 0 forms a closed curve in all frequency as shown 

Figures 2 and 3. The waves governed by D = 0 have
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(a) (b)

(c) (d)

Fig나「e 2. Wave number curves for waves propagating on the cylindrical shell excited at the dimensionless frequencies below the ring 

frequency (.Q = 1) : (a)Q=o.2, (b) q=o.5, (c).2-0.85 and (d)Q=o.98. The curves represented by (• • •), (xxx) 

and (o o o) correspond to waves governed by the equations such as D*„i = o, Ds2 = 0 and d心=o, respectively. 

The solid lines represent the wave number curves evaluated from the exact dispersion relation d=0.

(a) (b)

Figure 3. Wave number curves for waves propagating on the cylindrical shell excited at the dimensionless frequencies above the ring 

frequency (22 = 1) : (a)22=1.1 and (b)g=2.0. The curves represented by (• • •), (xxx) and (o o o) correspond to 

waves governed by the equations such as £)5 = 0, Qs2 = 0 and q街=0, respectively. The solid lines represent the 

wave number curves evaluated from the exact dispersion relation d=q.
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characteristics fbr propagation near the axial direction: 
longitudinal waves below the dimensionless frequency 

Q林,and shear waves between and Qf as shown in 

Eqs. (18) and (21). Above the ring frequency the waves 

governed by = 0 and 刀祢湖 二。correspond to 

longitudinal and shear waves.

One of characteristics below the ring frequency is a 
figure-8 shaped wavenumber curve. As shown in Figs. 

2(a)-(c), the top and bottom of the figure-8 in the region 

defined by Eq.(25) is formed by=0 which represents 

flexural waves. The dispersion relation Dmemi = 0 in 

Eq.(10) fbr membrane waves forms the center of the 

figure-8. Those waves have characteristics fbr propagation 
near the axial direction: shear waves below the dimensionless 
frequency and longitudinal waves between and 

Qf as shown in Eqs. (17) and (23). In other directions 

up to the direction defined by 0f, those are associated 

with membrane waves whose phase velocities are much 
smaller than the speeds of either longitudinal or shear 
waves propagating in the axial direction.

In the point of view for the homogeneous isotropic 
elastic material, it is expected that waves spreads with 

energy out from the source point over the shell so that 

the wavefronts form circles. However, the waves on the 
shell have the anisotropic nature of propagation up to 
frequencies somewhat higher than the ring frequency. 
The figure-8 of the wavenumber curve is one of typical 
examples which shows the anisotropic nature of propagation. 
The outward normal direction to the wavenumber curve 
at any given point gives the group velocity direction, or 

the direction at which energy flows, for a wave with the 

corresponding wavenumber and phase velocity direction. 
Thus, the less circular the wavenumber curve becomes, the 

more anisotropic the wave propagation on the shell are. 
The fiirther research about the anisotropic characteristics 
of waves on the cylindrical shells need to be perfbnned.

IV. Conclusions

The dispersion relation has been analyzed to identify the 

characteristics of waves propagating on the cylindrical 
shells. The assumption of thin shells allowed the dispersion 
relation to be separated into three relations related to the 
propagation of flexural waves and two types of membrane 

waves, Those relations have been used to identify the 
characteristics of the wave number curves. The dispersion 

relation provided two and three closed wave number 

curves below and above the ring frequency, Above the 
ring frequency three wave number curves have been 

clearly identified to be those of flexural, shear and 

longitudinal waves, respectively. Below the ring frequency, 
the characteristics of two wave number curves have been 
identified with dependence of the direction of wave 
propagation.
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