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Abstract

This paper examines the dispersion relation governing the wave propagation on cylindrical shells. The assumption of
thin shells allows the dispersion relation to be separated into three relations related to the propagation of flexural waves
and two types of membrane waves. Those relations are used to identify the characteristics of the wave number curves.

The dispersion relation provides two and three closed wave number curves below and above the ring frequency. Above

the ring frequency three wave number curves are clearly identified to be those of flexural, shear and longitudinal waves,

respectively. Below the ring frequency, the characteristics of two wave number curves are identified with dependence

of the direction of wave propagation.
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l. Introduction

Vibration of cylindrical shells can be regarded as a
superposition of disturbances due to elastic waves
propagating on the shells. The analysis from a wave
viewpoint can give physical insight about how disturbance
propagates on vibrating shells. Pierce[1] introduced the
basic idea that waves propagating on a point-excited
cylindrical shell behave like waves propagating in a two-
dimensional unbounded homogeneous anisotropic medium
with excitation forces that are periodic in the transverse
direction. Pierce and Kil[2] used the idea to analyze the
wave propagation on the cylindrical shell. Their numerical
results yielded the implication that major features of the
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thin plate model’s prediction could hold relatively well,
down to frequencies as low as twice the ning frequency
of the cylindrical shell. Means, Koué;oupis and Pierce[3]
examined the wave propagation on a cylindrical shell
well below the ring frequency including a fluid-loading.
But their analysis was performed mainly in a low
frequency limit. The present paper ecxamined the
dispersion relation which governs wave propagation on
the cylindrical shells. The assumption of thin shells
allows the dispersion relation to be separated into three-
relations related to the propagation of flexural waves and
two types of membrane waves, Those relations are used
to identify the characteristics of the wave number curves.
Above the ring frequency three wave number curves are
clearly identified to be those of flexural, shear and
longitudinal waves, respectively. Below the ring frequency,
the characteristics of two wave number curves are
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identified with dependence of the direction of wave
propagation.

il. Formulation

2.1. Shell Dynamic Equation

Consider an infinite thin-walled cylindrical shell with
nominal radius ¢ and thickness % in Figure 1 (The
dispersion of waves is independent of presence of the ends
of the shell). The displacement vector v is described in
terms of variables w«,v and w in the axial (z),
circumferential ( ¢) and radial () directions. In order to
describe the displacement field on the shell, the Donnell’ s
thin shell dynamic equations[4] are used. However, the
methodology introduced in this paper, for the most part,
is independent of the adopted simple shell model.

With the allowance for a radial point-force excitation,
the shell dynamic equations take the forms

{1} v={F) (1)

where {7/} is a linear operator that can be found in
Ref[5]. {F} denotes the external force vector applied at
z=0 on the shell

The response of the point excited cylindrical shell can
be regarded as a suf.»erposition of propagating disturbances
due to elastic waves which circum-navigate the cylinder.
This physical idea allows the response to be taken as a
spatial Fourier integral[6]. The axial component of the

displacement vector, for example, with the suppressed

-1t

time dependence e ~'%,
w( P, z, W)= ﬁ Lfm Uk, w) e™ ™t )
> &y D P B AN F]

where £k, is the axial wavenumber. # corresponds to the
circumferential wave number k;= n/a. The Fourier
transform U/, can be regarded as the complex amplitude

of the axial displacement component, which is associated
with waves propagating in the direction of the related

wave number vector k as
k=k¢'é;+k,§;=‘ksm9ké;+kcosﬁk§; 3)

where 8, = tan ~!(n/ k,a). ¢, and ¢, correspond to the
unit vector in the corresponding directions.

The algebraic equations governing the Fourier transforms
U,.V,and W, are obtained from Eq.(1). Those can be

expressed in matrix form as

oy, 0
[L][ V,,y=[ 0] @

where elements of the matrix [L] take the forms

Ly=F~ka— IEV n’, Lip= —‘l%z nk.a (= Ly)

Ly=ivka (=1Ly), Lp=2~ 1_5_3 K — b,

Luy=in (=Lg), Ly=1+e(Hd+ #t)e — 0 (5)

{ -

z=0

Figure 1. Coordinate system of a ¢vlindrical shell.
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Here ¢=#%*/(124%) and @, corresponds to the Fourier
transform of the radial point force F= Fyd(z) & d)e ~'“.
In Eq.(5) the dimensionless frequency is used as 2= w/w,
where w,=(1/a)[ Ef o(1— )] denotes the ring frequency
of the cylinder. Here E, p and v correspond to Young's
modulus, density and Poisson’s ratio, respectively.

For a nontrivial solution of Eq.(4), the determinant of
the coefficient matrix must be zero as

det([L]) = Dn. k., w) =0 ()]

that takes the form of a fourth-order equation in &%
Eq.(6) is called the dispersion relation governing the wave

propagation on the shells.

2.2. Dispersion Relation

Naturally occurring plane wave solutions of shell
dynamic equations are governed by the dispersion relation
D{n, k., w) =0 in Eq.(6). Depending on the nature of the
roots of the dispersion relation, the solution describes
propagating or exponentially decaying waves. The
propagating waves include flexural, longitudinal and shear
waves,

The thickness of the shell is regarded small compared
with the radius of the shell like #/a< 1/20 (or e=
/(1245 <2.1x10 ~*) which is generally accepted for
thin shell dynamics[7]. Such a small ¢ allows the function
D to be factored to

D = Dy Do = Dyiee D yiems D memz )
where
D = eky— 8+ (1- %) cos '8, ®
Do = L5 D 1y D et ©)
Here,
D oy = (Hi = 82) 5 Dy = (FHp— &5) (10)
where

Lo+ (I 172 IL— (L 1/2

L=Q0-»[(1-Pcos’8— 2 ,

5= —-35—994+-'1E—y[1+2(l+v)c0629k].92

Ia=—(1%ﬁga
+—(-15—V21[1—2(3“u)c066k+4(1— vycos '6,) &°

+—(1;—"21[1+4(1+u)coszek—4(1—y2>ms4ek]g4

Here k,= ka represents the dimensionless wavenumber.

The factor D, gives the dispersion relation of flexural

waves. The factor D ., is independent of the parameter &
(ie. thickness #), and D,.,=0 gives the dispersion
relation of membrane waves. The factor D, is exactly
factored t0 D ..oy D menp @S shown in Egs.(9)-(11). This
factorization is effective in all frequency range. Each of
Dpyey=0 and D,,..,=0 correspond to the dispersion
refation of the different types of membrane waves.

In the limit of high frequency, 2> 1, those three factors
can be approximated by

Dy = ek — &F (12)
D et = = K2, = Dig (13)
D e ™> 72— (& — 152 1), = Dy (14)

The three factors, when separately equated to zero,
correspond to dispersion relations for flexural, longitudinal,
and shear waves propagating on thin plates, respectively.
Improved approximations that hold down to moderate
values of Q

3

Dipng = ¥ — F2—[ sin?8,+ vecos 26,]° (15)

Doy = 22— A5 Y B 2(1— ) sin*0y o8 26, (16)

When &,=0, such that the propagation is in the axial
direction, D ,.m and D,... Eq.(10) are

D yom = 155 (@ - 152 E) an
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. 2__
D= L= 2 as)
a Q2 lowef than Q,, where

_ 1—w(1+20) 1
2.= [y (19)

which corresponds to ©=0,94 with »=0,283. But, at £
higher than Q,,, those take the opposite forms

_ -
Dmm.l_ 92_(1“V2) kl) (20)
Do = (7255 (@ - 152 4) @b

Here, Eqs.(17) and (21), when equated to zero, correspond
to the dispersion relation of shear waves on plates.
Therefore, for Q lower than 2,, those relations indicate
that D, and D,,,., when 8,=0, are associated with
shear and longitudinal waves, respectively, even though
they are related to longitudinal and shear waves,
respectively, at @ higher than £,,. In low frequency limit
(£< 1), the factor D,,,., in Eq.(18) is best approximated

by
_Q2
Doens = =1y o @

For the case when the propagation is in the axial direction,
it indicates that the phase velocity of a longitudinal wave
in the low frequency limit is ( E/p) 2, which corresponds
to the so-called “bar-velocity”.

When 4,=x/2, such that the propagation in the
circumferential direction, D e and D .., in Eq.(10)
take the forms

D ooy = (- 1)— % (23)

Do = oy (@ - 158D (24)

It indicates that D, and D,.,., when 6@,= z/2, are

associated to longitudinal and shear waves, respectively.
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lll. Results

The characteristics of wave propagation on the shell are
examined by plotting the wave number curve of constant
frequency, along which the dispersion relation is satisfied
in wave oumber space. Figures 2 and 3 show the
wavenumber curves below and above the ring frequency

(2=1), respectively. Those are predicted from the

dispersion relations such as D o0 =0, D pemz =0, D per
=0 in Eqs.(8)-(11). Those are also compared to the
wavenumber curves evaluated from the exact dispersion
relation in Eq.(6). In these computations, ¢=3,3x10 ~°
( hla=1/50) was used. The results show that the
approximate factorization gives very good approximations
at the dimensionless frequency below and above the ring
frequency. '

Figures 2(a)-{(¢} show that the wavenumber curve for
flexural waves does not form a closed curve at dimensionless
frequencies below a certain frequency, which is determined
as 9,=(1— ") "? (corresponding to 0.96 for v=(.283)
from Eq.(8). Those figures also show that the flexural
waves propagate in the particular region, which is defined
as

[641<] 8el< | x— 8l (25)

Here, the angle 4, corresponds to 8,= cos ~'[ %/(1—19)]
determined from Eq.(8). ’

Figures 2(a)-(c)} show that the wave number curve
represented by D, =0 forms two open curves up to
£, which approximately resemble parabolas near %,
axis. When the finite value of & is taken account, these
curves continue to the curve represented b'y Dg.=0 at
dimensionless frequency below £, The wave number
curve represented by D ..., =0 do not exist between 2,
and Q=1 as illustrated in Figure 2(d). Above the ring
frequency, it forms a closed curve which corresponds to
longitudinal waves as shown in Figures 3(a) and (b).
However, the wave number curve represented by
D ,...a=0 forms a closed curve in all frequency as shown

Figures 2 and 3. The waves governed by D ,,..,=0 have
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Wave number curves for waves propagating on the cylindrical shell excited at the dimensionless frequencies below the ring
frequency (2 =1) : {a) £=0.2. ) £=0.5, (¢} 2=0.85 and {d} 2=0.98. The curves represenied by (e @ o), (xxx)
and (o o o} correspond to waves governed by the equations such as D ,em=0, D=0 and Dz, =0, respectively.
The solid lines represent the wave number curves evaluated from the exact dispersion relation p=gp.
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Figure 3. Wave number curves for waves propagating on the cylindrical shell excited at the dimensionless frequencies above the ring
frequency (2 =1) : (8 0=1.1 and {b} 2=2.0. The curves represenied by (e e ¢}, (xxx) and (o © o) correspond to
waves governed by the equations such as D ,..,n=0, Dmm=0 and D, =0, respectively. The solid lines represent the
wave number curves evaluated from the exact dispersion relation D=g.
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characteristics for propagation near the axial direction:
longitudinal waves below the dimensionless frequency
,,, and shear waves between £, and Q, as shown in
Egs. (18) and {21). Above the ring frequency the waves
governed by D_..=0and D,.,,=0 correspond to
longitudinal and shear waves.

One of characteristics below the ring frequency is a
figure-8 shaped wavenumber curve. As shown in Figs.
2(a)~(c), the top and bottom of the figure-8 in the region
defined by Eq.(25) is formed by D ,, = 0 which represents
flexural waves. The dispersion relation D, =0 in

Eq.(10) for membrane waves forms the center of the
figure-8. Those waves have characteristics for propagation
near the axial direction: shear waves below the dimensionless
frequency 2,,, and longitudinal waves between {,, and

£, as shown in Egs. (17) and (23). In other directions
up to the direction defined by g/, those are associated

with membrane waves whose phase velocities are much
smaller than the speeds of either longitudinal or shear
waves propagating in the axial direction.

In the point of view for the homogeneous isotropic
elastic material, it is expected that waves spreads with
energy out from the source point over the shell so that
the wavefronts form circles. However, the waves on the
shell have the anisotropic nature of propagation up to
frequencies somewhat higher than the ring frequency.
The figure-8 of the wavenumber curve is one of typical
examples which shows the anisotropic nature of propagation.
The outward normal direction to the wavenumber curve
at any given point gives the group velocity direction, or
the direction at which energy flows, for a wave with the
coneéponding wavenumber and phase velocity direction.
Thus, the less circular the wavenumber curve becomes, the
more anisotropic the wave propagation on the shell are.
The further research about the anisotropic charactertstics

of waves on the cylindrical shells need to be performed.
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IV. Conclusions

The disperston relation has been analyzed to identify the
characteristics of waves propagating on the cylindrical
shells, The assumption of thin shells allowed the dispersion
relation to be separated into three relations related to the
propagation of flexural waves and two types of membrane
waves, Those relations have been used to identify the
characteristics of the wave number curves. The dispersion
relation provided two and three closed wave number
curves below and above the ring frequency, Above the
ring frequency three wave number curves have been
clearly identified to be those of flexural, shear and
longitudinal waves, respectively, Below the ring frequency,
the characteristics of two wave number curves have been
identified with dependence of the direction of wave
propagation.
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