• Title/Summary/Keyword: shear property

Search Result 629, Processing Time 0.021 seconds

Erosion Characteristics of Kaolinite (카올리나이트의 침식특성)

  • Lee, Ju-Hyung;Kwak, Ki-Seok;Park, Jae-Hyeon;Chung, Moon-Kyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.533-537
    • /
    • 2004
  • The erodibility of soil is an important factor to scour, especially in fine-grained soils. In this study, the erosion characteristics of kaolinite are quantified through the scour rate tests using the Erosion Function Apparatus called EFA. The basic soil property tests are also performed. The kaolinite samples are prepared by mixing with distilled water and formed to the designed maximum consolidation pressure of 60, 110, 160, 240, 360kPa, respectively. The results of the scour rate tests are presented in a format of a plot showing the relationship between erosion rates and shear stresses. Erosion properties of kaolinite showed a striking contrast according to the maximum consolidation pressure, and a correlation was established between the erosion properties of kaolinite and the soil properties; water content, undrained shear strength, dry density.

  • PDF

A new model for T-shaped combined footings part II: Mathematical model for design

  • Luevanos-Rojas, Arnulfo;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel
    • Geomechanics and Engineering
    • /
    • v.14 no.1
    • /
    • pp.61-69
    • /
    • 2018
  • The first part shows the optimal contact surface for T-shaped combined footings to obtain the most economical dimensioning on the soil (optimal area). This paper presents the second part of a new model for T-shaped combined footings, this part shows a the mathematical model for design of such foundations subject to axial load and moments in two directions to each column considering the soil real pressure acting on the contact surface of the footing with one or two property lines restricted, the pressure is presented in terms of an axial load, moment around the axis "X" and moment around the axis "Y" to each column, and the methodology is developed using the principle that the derived of the moment is the shear force. The classic model considers an axial load and a moment around the axis "X" (transverse axis) applied to each column, i.e., the resultant force from the applied loads is located on the axis "Y" (longitudinal axis), and its position must match with the geometric center of the footing, and when the axial load and moments in two directions are presented, the maximum pressure and uniform applied throughout the contact surface of the footing is considered the same. To illustrate the validity of the new model, a numerical example is presented to obtain the design for T-shaped combined footings subjected to an axial load and moments in two directions applied to each column. The mathematical approach suggested in this paper produces results that have a tangible accuracy for all problems.

Equivalent Mechanical and Thermal Properties of Multiphase Superconducting Coil Using Finite Element Analysis (유한요소해석을 이용한 다상의 초전도 코일에 대한 기계적 열적 등가 물성)

  • Sa, J.W.;Her, N.I.;Choi, C.H.;Oh, Y.K.;Cho, S.;Do, C.J.;Kwon, M.;Lee, G.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.975-980
    • /
    • 2001
  • Like composite material. the coil winding pack of the KSTAR (Korea Superconducting Tokamak Advanced Research) consist of multiphase element such as metallic jacket material for protecting superconducting cable, vacuum pressurized imprepregnated (VPI) insulation, and corner roving filler. For jacket material, four CS (Central Solenoid) Coils, $5^{th}$ PF (Poloidal Field) Coil, and TF (Toroidal Field Coil) use Incoloy 908 and $6-7^{th}$ PF coil, Cold worked 316LN. In order to analyze the global behavior of large coil support structure with coil winding pack, it is required to replace the winding pack to monolithic matter with the equivalent mechanical properties, i.e. Young's moduli, shear moduli due to constraint of total nodes number and element numbers. In this study, Equivalent Young's moduli, shear moduli, Poisson's ratio, and thermal expansion coefficient were calculated for all coil winding pack using Finite Element Method.

  • PDF

Microstructure and Mechanical Properties of Cu-Ni-Si Alloy Deformed by Differential Speed Rolling (이속압연에 의해 가공된 Cu-Ni-Si 합금의 미세 조직 및 기계적 성질)

  • Lee, Seong-Hee;Han, Seung Zeon
    • Korean Journal of Materials Research
    • /
    • v.26 no.1
    • /
    • pp.8-12
    • /
    • 2016
  • Effects of conventional rolling(CR) and differential speed rolling(DSR) on the microstructure and mechanical properties of Cu-Ni-Si alloy were investigated in detail. The copper alloy with thickness of 3 mm was rolled to 50 % reduction at ambient temperature without lubricant with a differential speed ratio of 2:1. The conventional rolling in which the rolling speed of upper and lower rolls is identical was performed under identical rolling conditions. The shear strain introduced by the CR showed positive values at positions of upper roll side and negative values at positions of lower roll side. However, it showed zero or positive values at all positions for the samples rolled by the DSR. The microstrucure and texture development of the as-rolled copper alloy did not show any significant difference between CR and DSR. The tensile strength of the DSR processed specimen was larger than that of the CR processed specimen. The effects of rolling methods on the microstructure and mechanical properties of the as-rolled copper alloy are discussed in terms of the shear strain.

Analytical Approach to Compression and Shear Characteristics of the Unit Cell of PCM Core with Pyramidal Configuration (피라미드 형상의 PCM 코어 단위 셀의 압축 및 전단특성에 관한 해석적 연구)

  • Kim, S.W.;Jung, H.C.;Lee, Y.S.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.7
    • /
    • pp.411-415
    • /
    • 2010
  • A sandwich panel which is comprised of truss cores faced with solid face sheets is lightweight and multi-functional. So it is widely used to not only structural material but also heat transfer media in transportation field such as airplane, train and vessel. There are various core topologies such as pyramidal and tetrahedral truss, square honeycombs and kagome truss. The study focused on analytical approach to optimize compression and shear quality of the unit cell of PCM with pyramidal configuration. With various unit cell models which have the same core weight per unit area but different truss member angle, analytical solution for effective stress ($\bar{\sigma},\bar{\tau}$), peak stress ($\bar{\sigma}_{peak},\bar{\tau}_{peak}$) by yielding and buckling, relative density ($\bar{\rho}_c$) and effective stiffness ($\bar{E},\bar{G}$) have been computed and compared each other. With this approach, the most optimal core configuration was predicted. The result has become the efficient guidelines for the design of PCM core structure.

A Study on the Fracture Mode Characteristics of Automotive Application Component Lead-free Solder Joints (자동차 전장부품 무연솔더 접합부의 파괴모드 특성에 관한 연구)

  • Jeon, Yu-Jae;Kim, Do-Seok;Shin, Young-Eui
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.90-96
    • /
    • 2011
  • In this study, the characteristic of fractured portion and shape on solder joints were investigated according to the thermal shock test for Automotive Application Component using Sn-3.0Ag-0.5Cu solder, which has a outstanding property as Lead-free solder. The value of pull and shear strength was decreased in principle after 432 cycles thermal shock test. In addition, fracture mode was verified by using EDS and SEM to observe fractured shape on the solder joints before and after thermal shock. In before thermal shock test, the fracture mode revealed typically solder layer's fracture mode. In after thermal shock test, we identified multiple fracture mode of the ductile and brittle fracture. Even though same composition of solder was used to experimental for estimating. the fracture mode varied on the fracture portion's height and the directional angles of shear strength. In conclusion, we identified that mechanical strength was affected on the solder layer's fracture mode.

A Case Study on Geotechnical Properties and Weathering Degree of Weathered Granite Rock (화강 풍화암의 지반특성 및 풍화도 평가에 대한 사례 연구)

  • Lee, Seung-Hwan;Yoo, Byeong Soo;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.12
    • /
    • pp.127-139
    • /
    • 2017
  • Site investigation including boring and various in-situ borehole test (Pressuremeter test, Borehole shear test, Downhole test, Suspension PS logging, Density logging) and X-ray fluorescence analysis for rock core sample were performed to estimate geotechnical properties and weathering degree of weathered granite rock in Goyang. Deformation modulus, shear strength parameter and shear wave velocity estimated through in-situ borehole test had a tendency to increase with depth. And several chemical weathering indices evaluated by X-ray fluorescence analysis had a general tendency of reducing weathering degree in accordance with depth. Also, relationship between VR determined as a representative weathering index and the geotechnical properties was analyzed.

Microstructure and Mechanical Properties of a Copper Alloy Sheet Processed by a Differential Speed Rolling (이속압연에 의해 가공된 동합금 판재의 조직 및 기계적 특성)

  • Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.22 no.11
    • /
    • pp.581-586
    • /
    • 2012
  • The microstructure and mechanical properties of a copper alloy sheet processed by differential speed rolling (DSR) were investigated in detail. A copper alloy with thickness of 3 mm was rolled to a 50% reduction at ambient temperature without lubrication and with a differential speed ratio of 2.0:1. For comparison, conventional rolling (CR), in which the rolling speeds of the upper and lower rolls is 2.0 m/min, was also performed under the same rolling conditions. The shear strain of the sample processed by CR showed positive values at the positions of the upper roll side and negative values at the positions of the lower roll side. On the other hand, the sample processed by the DSR showed zero or positive shear strain values at all positions. However, the microstructure and mechanical properties of the as-rolled copper alloys did not show such significant differences between the CR and the DSR. The samples rolled by the CR and the DSR exhibited a typical deformation structure. In addition, the DSR processed samples showed a typical rolling texture in which {112}<111>, {011}<211> and {123}<634> components were developed at all positions. Therefore, it is concluded that the DSR was very effective for the introduction of a uniform microstructure throughout the thickness of the copper alloy.

Changes of Flame Retardant and Physical Properties of Cotton Knitted Fabrics after Flame Resistant Treatment (면편성물의 방염처리에 의한 방염성과 물성변화)

  • Jee, Ju-Won;Song, Kyung-Geun
    • The Korean Fashion and Textile Research Journal
    • /
    • v.5 no.3
    • /
    • pp.273-282
    • /
    • 2003
  • Effect of fixation methods and relaxation treatment on the flame retardant(FR) and physical properties of MDPP/HMM treated cotton weft-knitted fabrics were studied. Combination of four different fixation methods - relaxation, swelling agent treatment, pad dry cure fixation, and wet fixation - were applied to flame retardant finish of cotton weft-knitted fabric with MDPP/HMM. As the results, 1. Swelling agent and wet fixation method helps FR agent penetrate the fiber efficiently. Interlock showed relatively higher values of LOI than single jersey. 2. Interlock showed relatively higher values of bending rigidity(B), shear rigidity(G) and coefficient of friction(MIU) than those of single jersey before and after flame resistant treatment. 3. An increase in internal volume of cotton fiber by relaxation treatment increased the bending rigidity(B), shear rigidity(G) and compressional energy(WC). 4. The cotton weft-knitted fabric treated wet fixation, which crossliked FR agent efficiently, showed higher bending rigidity, shear rigidity(G) and lower compressional energy(WC). Retention of swelling ability of cotton weft-knitted fabrics treated with MDPP/HMM, which increased the internal volume of cotton weft-knitted fabric, showed lower bending rigidity.

Effects of Fiber Surface-Treatment and Sizing on the Dynamic Mechanical and Interfacial Properties of Carbon/Nylon 6 Composites

  • Cho, Dong-Hwan;Yun, Suk-Hyang;Kim, Jun-Kyung;Lim, Soon-Ho;Park, Min;Lee, Geon-Woong;Lee, Sang-Soo
    • Carbon letters
    • /
    • v.5 no.1
    • /
    • pp.1-5
    • /
    • 2004
  • The effects of fiber surface-treatment and sizing on the dynamic mechanical properties of unidirectional and 2-directional carbon fiber/nylon 6 composites by means of dynamic mechanical analysis have been investigated in the present study. The interlaminar shear strengths of 2-directional carbon/nylon 6 composites sized with various thermosetting and thermoplastic resins are also measured using a short-beam shear test method. The result suggests that different surface-treatment levels onto carbon fibers may influence the storage modulus and tan ${\delta}$ behavior of carbon/nylon 6 composites, reflecting somewhat change of the stiffness and the interfacial adhesion of the composites. Dynamic mechanical analysis and short-beam shear test results indicate that appropriate use of a sizing material upon carbon fiber composite processing may contribute to enhancing the interfacial and/or interlaminar properties of woven carbon fabric/nylon 6 composites, depending on their resin characteristics and processing temperature.

  • PDF