DOI QR코드

DOI QR Code

Microstructure and Mechanical Properties of Cu-Ni-Si Alloy Deformed by Differential Speed Rolling

이속압연에 의해 가공된 Cu-Ni-Si 합금의 미세 조직 및 기계적 성질

  • Lee, Seong-Hee (Department of Advanced Materials Science and Engineering, Mokpo National University) ;
  • Han, Seung Zeon (Commercialization Research Division, Korea Institute of Materials Science)
  • 이성희 (국립목포대학교 신소재공학과) ;
  • 한승전 (재료연구소 실용화연구단)
  • Received : 2015.10.12
  • Accepted : 2015.12.11
  • Published : 2016.01.27

Abstract

Effects of conventional rolling(CR) and differential speed rolling(DSR) on the microstructure and mechanical properties of Cu-Ni-Si alloy were investigated in detail. The copper alloy with thickness of 3 mm was rolled to 50 % reduction at ambient temperature without lubricant with a differential speed ratio of 2:1. The conventional rolling in which the rolling speed of upper and lower rolls is identical was performed under identical rolling conditions. The shear strain introduced by the CR showed positive values at positions of upper roll side and negative values at positions of lower roll side. However, it showed zero or positive values at all positions for the samples rolled by the DSR. The microstrucure and texture development of the as-rolled copper alloy did not show any significant difference between CR and DSR. The tensile strength of the DSR processed specimen was larger than that of the CR processed specimen. The effects of rolling methods on the microstructure and mechanical properties of the as-rolled copper alloy are discussed in terms of the shear strain.

Keywords

References

  1. Q. Cui and K. Ohori, Mater. Sci. Tech., 16, 1095 (2000). https://doi.org/10.1179/026708300101507019
  2. T. Hirohata, S. Masaki and S. Shima, J. Mater. Proc. Tech., 111, 113 (2001). https://doi.org/10.1016/S0924-0136(01)00492-7
  3. C. Y. Lim, S. Z. Han and S. H. Lee, Met. Mater. Int., 12, 225 (2006). https://doi.org/10.1007/BF03027535
  4. K. -H. Kim and D. N. Lee, Acta Mater., 49, 2583 (2001). https://doi.org/10.1016/S1359-6454(01)00036-2
  5. T. Sakai, S. Hamada and Y. Saito, Scripta Mater., 44, 2569 (2001). https://doi.org/10.1016/S1359-6462(01)00932-0
  6. S. H. Lee, D. J. Yoon, T. Sakai, S. H. Kim and S. Z. Han, J. Korean Inst. Met. Mater., 47, 121 (2009).
  7. S. H. Lee, D. J. Yoon, K. Euh, S. H. Kim and S. Z. Han, J. Korean Inst. Met. Mater., 48, 77 (2010). https://doi.org/10.3365/KJMM.2010.48.01.077
  8. S. H. Lee, J. Y. Lim, H. Utsunomiya, K. Euh and S. Z. Han, J. Korean Inst. Met. Mater., 48, 942 (2010). https://doi.org/10.3365/KJMM.2010.48.10.942
  9. S. H. Lee, J. Y. Lim, D. J. Yoon, K. Euh and S. Z. Han, Korean J. Mater. Res., 21, 15 (2011). https://doi.org/10.3740/MRSK.2011.21.1.015
  10. S. H. Lee, Korean J. Mater. Res., 22, 581 (2012). https://doi.org/10.3740/MRSK.2012.22.11.581

Cited by

  1. Continuous Differential Speed Rolling for Grain Refinement of Metals: Processing, Microstructure, and Properties pp.1547-6561, 2019, https://doi.org/10.1080/10408436.2018.1525528