Browse > Article
http://dx.doi.org/10.3740/MRSK.2012.22.11.581

Microstructure and Mechanical Properties of a Copper Alloy Sheet Processed by a Differential Speed Rolling  

Lee, Seong-Hee (Department of Advanced Materials Science and Engineering, Mokpo National University)
Publication Information
Korean Journal of Materials Research / v.22, no.11, 2012 , pp. 581-586 More about this Journal
Abstract
The microstructure and mechanical properties of a copper alloy sheet processed by differential speed rolling (DSR) were investigated in detail. A copper alloy with thickness of 3 mm was rolled to a 50% reduction at ambient temperature without lubrication and with a differential speed ratio of 2.0:1. For comparison, conventional rolling (CR), in which the rolling speeds of the upper and lower rolls is 2.0 m/min, was also performed under the same rolling conditions. The shear strain of the sample processed by CR showed positive values at the positions of the upper roll side and negative values at the positions of the lower roll side. On the other hand, the sample processed by the DSR showed zero or positive shear strain values at all positions. However, the microstructure and mechanical properties of the as-rolled copper alloys did not show such significant differences between the CR and the DSR. The samples rolled by the CR and the DSR exhibited a typical deformation structure. In addition, the DSR processed samples showed a typical rolling texture in which {112}<111>, {011}<211> and {123}<634> components were developed at all positions. Therefore, it is concluded that the DSR was very effective for the introduction of a uniform microstructure throughout the thickness of the copper alloy.
Keywords
differential speed rolling; copper alloy; microstructure; mechanical property; shear strain;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 H. C. Kwon, Comprehension of Copper and Copper Alloys, P.522, Korean Steelmaking Newspaper Corp., Korea (2008) (in Korean).
2 T. Kamijo, S. Shinya and H. Hukutomi, J. Jpn. Soc. Tech. Plast. 25(280), 375 (1984).
3 Q. Cui and K. Ohori, Mater. Sci. Technol., 16, 1095 (2000).   DOI   ScienceOn
4 K. -H. Kim and D. N. Lee, Acta Mater., 49, 2583 (2001).   DOI   ScienceOn
5 S. H. Lee and D. N. Lee, Int. J. Mech. Sci., 43, 1997 (2001).   DOI   ScienceOn
6 T. Sakai, S. Hamada and Y. Saito, Scr. Mater., 44, 2569 (2001).   DOI   ScienceOn
7 T. Sakai, K. Yoneda and Y. Saito, Mater. Sci. Forum, 396-402, 309 (2002).   DOI
8 T. Hirohata, S. Masaki and S. Shima, J. Mater. Process. Tech. 111, 113 (2001).   DOI   ScienceOn
9 W. J. Kim, J. D. Park and W. Y. Kim, J. Alloys Compd., 460, 289 (2008).   DOI   ScienceOn
10 S. H. Lee, T. Sakai and D. H. Shin, Mater. Trans., 44, 1382 (2003).   DOI   ScienceOn
11 J. Watanabe, T. Sakai, N. Iwamoto and H. Utsunomiya, J. Jpn. Res. Inst. Adv. Cu-Base Mater. Tech., 44, 73 (2005).
12 S. H. Lee, D. J. Yoon, T. Sakai, S. H. Kim and S. Z. Han, J. Kor. Inst. Met. & Mater., 47(2), 121 (2009) (in Korean).
13 S. H. Lee, D. J. Yoon, K. Euh, S. H. Kim and S. Z. Han, Kor. J. Met. Mater., 48(1), 77 (2010) (in Korean).   DOI   ScienceOn
14 N. Muramatsu, R. Takeuchi, N. Yamagami, T. Sakai and H. Utsunomiya, J. Jpn. Res. Inst. Adv. Cu- Base Mater. Tech., 48, 73 (2009).
15 S. H. Lee, J. Y. Lim, H. Utsunomiya, K. Euh and S. Z. Han, Kor. J. Met. Mater., 48, 942 (2010) (in Korean).   DOI
16 S. H. Lee, J. Y. Lim, D. J. Yoon, K. Euh and S. Z. Han, Kor. J. Mater. Res., 21, 15 (2011) (in Korean).   DOI   ScienceOn